Jaynes-Cummings Model

Ali Ramadhan

Nonlinear Optics presentation
University of Waterloo

March 22, 2016

Jaynes-Cummings model

- It's a quantum optics model describing the interaction of a two-level atom with a single quantized mode of an optical cavity's electromagnetic field.
- Initially proposed by Edwin Jaynes and Fred Cummings in 1963 [1,2].
- First experimental demonstration in 1984 by Rempe, Walther, and Klein [3].
- It's been popular to study as it can be solved analytically and is easily extended. It also accurately predicts a wide range of experiments.
- Widely used in cavity QED and circuit QED, especially in relation to quantum information processing.

Outline

1. Derive the Jaynes-Cummings Hamiltonian

$$
\hat{H}_{\mathrm{JC}}=\hbar \omega \hat{a}^{\dagger} \hat{a}+\frac{1}{2} \hbar \omega_{0} \hat{\sigma}_{z}+\hbar \lambda\left(\hat{\sigma}_{+} \hat{a}+\hat{\sigma}_{-} \hat{a}^{\dagger}\right)
$$

2. Features of the model.
2.1 Dressed states and the Jaynes-Cummings ladder.
2.2 Vacuum-field Rabi oscillations.
2.3 Collapse and revival of atomic oscillations.
3. Experimental observations of some of the model's features.

Quantizing the EM field

- We will derive the free field Hamiltonian $\hat{H}_{\text {field }}=\hbar \omega_{c} \hat{a}^{\dagger} \hat{a}$ by quantizing the electromagnetic field in a one-dimensional cavity. A more thorough 10-page derivation in three dimensions can be found in [4].
- We have to start somewhere. Let's start with Maxwell's equations in free space

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =0 & \nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{E} & =\frac{\partial \mathbf{B}}{\partial t} & \nabla \times \mathbf{B} & =\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
\end{aligned}
$$

which can be used to derive the homogeneous electromagnetic wave equation

$$
\nabla^{2} \mathbf{E}=\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
$$

Quantizing the EM field

- Now consider a one-dimensional cavity along the z-axis with perfectly conducting walls at $z=0$ to $z=L$.
- We have to pick a polarization for the \mathbf{E}-field so might as well pick $\hat{\mathbf{x}}$ so that $\mathbf{E}(\mathbf{r}, t)=E_{x}(z, t) \hat{\mathbf{x}}$. The wave equation then reduces to

$$
\frac{\partial^{2} E_{x}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial t}=0
$$

- This is easily solved by separation of variables with $E_{x}(z, t)=Z(z) T(t)$ yielding a solution

$$
E_{x}(z, t)=\sqrt{\frac{2 \omega_{c}^{2}}{V \epsilon_{0}}} q(t) \sin (k z)
$$

Quantizing the EM field

- From Ampere's Law

$$
\nabla \times \mathbf{B}=\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
$$

we can find the magnetic field

$$
B_{y}(z, t)=-\frac{1}{c^{2}} \int \frac{\partial E_{x}}{\partial t} d z=\sqrt{\frac{2 \mu_{0}}{V}} \dot{q}(t) \cos (k z)
$$

where V is the effective volume of the cavity, q is a time-dependent amplitude with units of length, and $k=m \pi / L$ for an integer $m>0$.

Quantizing the EM field

- In this case, the classical field energy, which is equal to the Hamiltonian, is given by

$$
\begin{aligned}
H & =\frac{1}{2} \int d V\left(\epsilon_{0} \mathbf{E}^{2}+\frac{\mathbf{B}^{2}}{\mu_{0}}\right) \\
& =\frac{1}{2} \int d V\left(\epsilon_{0} E_{x}^{2}(z, t)+\frac{B_{y}^{2}(z, t)}{\mu_{0}}\right) \\
& =\frac{1}{2}\left[\dot{q}^{2}(t)+\omega_{c}^{2} q^{2}(t)\right]
\end{aligned}
$$

which looks like the Hamiltonian for a harmonic oscillator. (Surprise!)

Quantizing the EM field

- Now let's promote all our dynamical variables $\left(q, \dot{q}, E_{x}, B_{y}, H\right)$ to operators, and we'll denote $\dot{q} \equiv p$, giving us

$$
\begin{gathered}
\hat{E}_{x}(z, t)=\sqrt{\frac{2 \omega_{c}^{2}}{V \epsilon_{0}}} \hat{q}(t) \sin (k z) \quad \hat{B}_{y}(z, t)=\sqrt{\frac{2 \mu_{0}}{V}} \hat{p}(t) \cos (k z) \\
\hat{H}=\frac{1}{2}\left[\hat{q}^{2}(t)+\omega_{c}^{2} \hat{q}^{2}(t)\right]
\end{gathered}
$$

- Let's introduce creation and annihilation operators

$$
\hat{a}(t)=\frac{1}{\sqrt{2 \hbar \omega_{c}}}\left[\omega_{c} \hat{q}(t)+i \hat{p}(t)\right] \quad \hat{a}^{\dagger}(t)=\frac{1}{\sqrt{2 \hbar \omega_{c}}}\left[\omega_{c} \hat{q}(t)-i \hat{p}(t)\right]
$$

Quantizing the EM field

- The electric and magnetic field can now be written as

$$
\begin{aligned}
& \hat{E}_{x}(z, t)=E_{0}\left[\hat{a}(t)+\hat{a}^{\dagger}(t)\right] \sin (k z) \\
& \hat{B}_{y}(z, t)=E_{0}\left[\hat{a}(t)-\hat{a}^{\dagger}(t)\right] \cos (k z)
\end{aligned}
$$

- More importantly, we can write the Hamiltonian as

$$
\hat{H}=\hat{H}_{\text {field }}=\hbar \omega_{c}\left[\hat{a}(t) \hat{a}^{\dagger}(t)+\frac{1}{2}\right] \approx \hbar \omega_{c} \hat{a}(t) \hat{a}^{\dagger}(t)=\hbar \omega_{c} \hat{a} \hat{a}^{\dagger}
$$

- We can justify ignoring the zero-point energy due to redefining our zero of energy to be $\hbar \omega_{c} / 2$ or if we assume that we have a lot of field quanta (recall that $\hat{n}=\hat{a} \hat{a}^{\dagger}$ is the number operator) such that $\hbar \omega_{c} / 2$ is negligible.

Two-level atom Hamiltonian

- Let's denote our two the two levels of the atom by $|g\rangle$ for the ground state and $|e\rangle$ for the excited state, or in a vector representation

$$
|g\rangle=\binom{0}{1} \quad|e\rangle=\binom{1}{0}
$$

- The Hamiltonian can then be written as

$$
\begin{aligned}
\hat{H} & =E_{g}|g\rangle\langle g|+E_{e}|e\rangle\langle e|=\left(\begin{array}{cc}
E_{e} & 0 \\
0 & E_{g}
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
E_{g}+E_{e} & 0 \\
0 & E_{g}+E_{e}
\end{array}\right)+\frac{1}{2}\left(\begin{array}{cc}
E_{e}-E_{g} & 0 \\
0 & -\left(E_{e}-E_{g}\right)
\end{array}\right) \\
& =\frac{1}{2}\left(E_{g}+E_{e}\right) \hat{\mathbb{1}}+\frac{1}{2}\left(E_{e}-E_{g}\right) \hat{\sigma}_{z}
\end{aligned}
$$

Two-level atom Hamiltonian

- Writing the energy difference as $\hbar \omega_{a}=E_{e}-E_{g}$ where ω_{a} is the atomic transition frequency and shifting our zero of energy to $E_{g}+E_{e}$ because we only care about energy differences, we can write the atomic Hamiltonian as

$$
\hat{H}=\hat{H}_{\mathrm{atom}}=\frac{1}{2} \hbar \omega_{a} \hat{\sigma}_{z}
$$

Interaction Hamiltonian

- As always, we'll start with $\hat{H}=-\hat{\mu} \cdot \hat{\mathbf{E}}$ so

$$
\begin{aligned}
\hat{H}_{\mathrm{int}} & =-\hat{m u} \cdot E_{0}\left(\hat{a}+\hat{a}^{\dagger}\right) \sin (k z) \hat{\mathbf{x}} \\
& =\lambda \hat{\mu}\left(\hat{a}+\hat{a}^{\dagger}\right)
\end{aligned}
$$

where $\lambda=-\sqrt{\frac{\hbar \omega_{c}}{\epsilon_{0} V}} \sin (k z)$.

- Recall the Pauli matrices

$$
\begin{gathered}
\hat{\sigma}_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \hat{\sigma_{2}}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \hat{\sigma}_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\hat{\sigma}_{+}=\hat{\sigma}_{1}+i \hat{\sigma}_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad \hat{\sigma}_{-}=\hat{\sigma}_{1}-i \hat{\sigma}_{2}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Interaction Hamiltonian

- We know that $\langle g| \hat{\mu}|g\rangle=0$ and $\langle e| \hat{\mu}|e\rangle=0$ due to parity. Then expanding $\hat{\mu}$ in terms of the basis states $\{|g\rangle,|e\rangle\}$, we get

$$
\hat{\mu}=\mu|g\rangle\langle e|+\mu^{\star}|e\rangle\langle g|=\mu \hat{\sigma}_{-}+\mu \hat{\sigma}_{+}=\mu\left(\sigma_{-}+\sigma_{+}\right)
$$

where we assumed without loss of generality that the matrix element $\mu=\mu_{g e}=\langle g| \hat{\mu}|e\rangle$ is real.

- Thus the interaction Hamiltonian can be written as

$$
\hat{H}_{\mathrm{int}}=\hbar \Omega\left(\hat{\sigma}_{+}+\hat{\sigma}_{-}\right)\left(\hat{a}+\hat{a}^{\dagger}\right)
$$

where

$$
\Omega=-\frac{\mu}{\hbar} \sqrt{\frac{\hbar \omega_{c}}{\epsilon_{0} V}} \sin (k z)
$$

Interaction Hamiltonian

- In the interaction picture, the operators evolve like

$$
\begin{gathered}
\hat{a}(t)=\hat{a}(0) e^{-i \omega_{c} t} \quad \hat{a}^{\dagger}(t)=\hat{a}^{\dagger}(0) e^{i \omega_{c} t} \\
\hat{\sigma}_{ \pm}=\hat{\sigma}_{ \pm}(0) e^{ \pm i \omega_{a} t}
\end{gathered}
$$

- The Hamiltonian then becomes

$$
\begin{aligned}
\hat{H}_{\mathrm{int}}= & \hbar \Omega\left(\hat{\sigma}_{+} \hat{a}+\hat{\sigma}_{+} \hat{a}^{\dagger}+\hat{\sigma}_{-} \hat{a}+\hat{\sigma}_{-} \hat{a}^{\dagger}\right) \\
= & \hbar \Omega\left(\hat{\sigma}_{+} \hat{a} e^{i\left(\omega_{a}-\omega_{c}\right) t}+\hat{\sigma}_{+} \hat{a}^{\dagger} e^{i\left(\omega_{a}+\omega_{c}\right) t}\right. \\
& \left.\quad+\hat{\sigma}_{-} \hat{a} e^{-i\left(\omega_{a}+\omega_{c}\right) t}+\hat{\sigma}_{-} \hat{a}^{\dagger} e^{-i\left(\omega_{a}-\omega_{c}\right) t}\right)
\end{aligned}
$$

- The $\hat{\sigma}_{+} \hat{a}^{\dagger}$ and $\hat{\sigma}_{-} \hat{a}$ terms vary much more rapidly than the other terms and so we invoke the rotating wave approximation and drop them. They are also unphysical.

Interaction Hamiltonian

- We are now left with the following interaction Hamiltonian

$$
\hat{H}_{\mathrm{int}}=\hbar \Omega\left(\hat{\sigma}_{+} \hat{a}+\hat{\sigma}_{-} \hat{a}^{\dagger}\right)
$$

- The Jaynes-Cummings Hamiltonian is then

$$
\hat{H}_{\mathrm{JC}}=\hbar \omega_{c} \hat{a}^{\dagger} \hat{a}+\frac{1}{2} \hbar \omega_{a} \hat{\sigma}_{z}+\hbar \Omega\left(\hat{\sigma}_{+} \hat{a}+\hat{\sigma}_{-} \hat{a}^{\dagger}\right)
$$

just like we wanted.

Dressed states and the Jaynes-Cummings ladder

- The interaction Hamiltonian can only cause transitions of the type $|e\rangle|n\rangle \longleftrightarrow|g\rangle|n+1\rangle$ where these product states are referred to as the bare states of the Jaynes-Cummings model.
- For fixed n the dynamics of the system are confined to the two-dimensional space of product states $\{|e, n\rangle,|g, n+1\rangle\}$.
- In this basis, $\langle e, n \mid g, n+1\rangle=0$, and the Hamiltonian can be written as

$$
\hat{H}^{(n)}=\left(\begin{array}{cc}
n \hbar \omega_{c}+\frac{1}{2} \hbar \omega_{a} & \hbar \Omega \sqrt{n+1} \\
\hbar \Omega \sqrt{n+1} & (n+1) \omega_{c}-\frac{1}{2} \hbar \omega_{a}
\end{array}\right)
$$

Dressed states and the Jaynes-Cummings ladder

- The energy eigenvalues of $\hat{H}^{(n)}$ are given by

$$
E_{ \pm}(n)=\left(n+\frac{1}{2}\right) \hbar \omega_{c} \pm \hbar \Omega_{n}(\Delta)
$$

where

$$
\Omega_{n}(\Delta)=\sqrt{\Delta^{2}+4 \Omega^{2}(n+1)}
$$

and $\Delta=\omega_{a}-\omega_{c}$ is the detuning.

- On resonance $\Delta=0$ and $\Omega_{n}=2 \Omega \sqrt{n+1}$. So if we relabel $g_{0}=2 \Omega$

$$
E_{ \pm}=\left(n+\frac{1}{2}\right) \hbar \omega_{c} \pm \sqrt{n+1} \hbar g_{0}
$$

Dressed states and the Jaynes-Cummings ladder

The Jaynes-Cummings ladder. Note that the $\{|g, n\rangle,|e, n-1\rangle\}$ basis is used here so that $\Omega_{n}=\sqrt{n} \hbar g_{0}$.

Vacuum-field Rabi oscillations

- The JC Hamiltonian may be broken up into two commuting parts

$$
\hat{H}_{\mathrm{JC}}=\hat{H}_{\mathrm{I}}+\hat{H}_{\mathrm{II}}
$$

where

$$
\begin{aligned}
& \hat{H}_{\mathrm{I}}=\hbar \omega_{c} \hat{a}^{\dagger} \hat{a}+\frac{1}{2} \hbar \omega_{a} \hat{\sigma}_{z} \\
& \hat{H}_{\mathrm{II}}=\hbar \Omega\left(\hat{\sigma}_{+} \hat{a}+\hat{\sigma}_{-} \hat{a}^{\dagger}\right)
\end{aligned}
$$

such that $\left[\hat{H}_{\mathrm{I}}, \hat{H}_{\mathrm{II}}\right]=0$.

- All the dynamics are contained in the second part $\hat{H}_{\text {II }}$.
- Let the initial state of the field-atom system be $|i\rangle=|e, n\rangle$ and the final state be $|f\rangle=|g, n+1\rangle$.
- The state vector may then be written

$$
|\psi(t)\rangle=C_{i}|i\rangle+C_{f}|f\rangle
$$

Vacuum-field Rabi oscillations

- The Schrodinger equation in the interaction picture states that

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=\hat{H}_{\mathrm{II}}|\psi(t)\rangle
$$

- This allows us to write down differential equations for the coefficients

$$
\begin{aligned}
& \dot{C}_{i}=-i \Omega \sqrt{n+1} C_{f} \\
& \dot{C}_{f}=-i \Omega \sqrt{n+1} C_{i}
\end{aligned}
$$

or after plugging one into the other,

$$
\ddot{C}_{i}+\Omega^{2}(n+1) C_{i}=0
$$

- We'll impose the initial conditions $C_{i}(0)=1$ and $C_{f}(0)=0$.

Vacuum-field Rabi oscillations

- Solving the pair of harmonic-oscillator-looking equations we get

$$
\begin{aligned}
C_{i}(t) & =\cos (\Omega t \sqrt{n+1}) \\
C_{f}(t) & =-i \sin (\Omega t \sqrt{n+1})
\end{aligned}
$$

- Thus the solution is

$$
|\psi(t)\rangle=\cos (\Omega t \sqrt{n+1})|e, n\rangle-i \sin (\Omega t \sqrt{n+1})|g, n+1\rangle
$$

- The probability the system remains in the ground state is

$$
P_{i}(t)=\left|C_{i}(t)\right|^{2}=\cos ^{2}(\Omega t \sqrt{n+1})
$$

while the probability it makes a transition to the excited state is

$$
P_{i}(t)=\left|C_{i}(t)\right|^{2}=\sin ^{2}(\Omega t \sqrt{n+1})
$$

Vacuum-field Rabi oscillations

- The atomic inversion is given by

$$
W(t)=P_{i}(t)-P_{f}(t)=\cos (2 \Omega t \sqrt{n+1})
$$

- These are Rabi oscillations with frequency $\omega(n)=2 \Omega \sqrt{n+1}$.
- We notice that even in the absence of light, i.e. $n=0$, there is still a non-zero transition probability

$$
\left.W(t)\right|_{n=0}=\cos (2 \Omega t)
$$

- These vacuum-field Rabi oscillations are purely quantum mechanical and are the result of the atom spontaneously emitting a photon and absorbing it, then re-emitting it, etc.

Fock states

- To look at the collapse and revival of atomic oscillations, we will first have to look at Fock states and coherent states.
- Fock states, or $|n\rangle$, are eigenstates of the photon number operator

$$
\hat{n}|n\rangle=n|n\rangle, \quad \sum_{n=0}^{\infty}|n\rangle\langle n|=1, \quad\left\langle n \mid n^{\prime}\right\rangle=\delta_{n n^{\prime}}
$$

- We know that

$$
\hat{a}|n\rangle=\sqrt{n}|n-1\rangle \quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

and so excited states or Fock states can be written in terms of the vacuum state

$$
|n\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle
$$

Coherent states

- Coherent states are eigenstates of the annihilation operator

$$
\hat{a}|\alpha\rangle=\alpha|\alpha\rangle
$$

- They have well-defined amplitudes $|\alpha|$ and phases $\operatorname{Arg} \alpha$. Since \hat{a} is not Hermitian, the eigenvalues α may be complex and correspond to complex wave amplitudes in classical optics.
- We would like to express coherent states $|\alpha\rangle$ in terms of Fock states $|n\rangle$. To do so, we'll introduce the displacement operator

$$
\hat{D}(\alpha)=e^{\alpha \hat{a}^{\dagger}-\alpha^{\star} \hat{a}}
$$

- It is called so because it displaces the amplitude \hat{a} by the complex number α

$$
\hat{D}^{\dagger}(\alpha) \hat{a} \hat{D}(\alpha)=\hat{a}+\alpha
$$

Coherent states

- This implies that

$$
\hat{D}(-\alpha)|\alpha\rangle=|0\rangle
$$

or that coherent states are simply displaced vacuum states

$$
|\alpha\rangle=\hat{D}(\alpha)|0\rangle
$$

- Recall the Baker-Campbell-Hausdorff formula

$$
e^{\hat{A}+\hat{B}}=e^{-\frac{[\hat{A}, \hat{B}]}{2}} e^{\hat{A}} e^{\hat{B}}
$$

- We can now split the displacement operator like

$$
\hat{D}(\alpha)=e^{-\frac{1}{2}|\alpha|^{2}} e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^{\star} \hat{a}}
$$

Coherent states

- Acting with it on the vacuum to displace it, we get that

$$
|\alpha\rangle=\hat{D}(\alpha)|0\rangle=e^{-\frac{1}{2}|\alpha|^{2}} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle
$$

- The Fock representation shows that a coherent state has Poissonian photon statistics

$$
P_{n}=|\langle n \mid \alpha\rangle|^{2}=\frac{|\alpha|^{2 n}}{n!} e^{-|\alpha|^{2}}
$$

Collapse and revival of atomic oscillations

- Let's now consider more general (and interesting) dynamics.
- Let's assume the atom is initially in a superposition

$$
|\psi(0)\rangle_{\text {atom }}=C_{g}|g\rangle+C_{e}|e\rangle
$$

- And let's assume the field is initially in a coherent state

$$
|\psi(0)\rangle_{\text {field }}=\sum_{n=0}^{\infty} C_{n}|n\rangle, \quad C_{n}=e^{-\frac{1}{2}|\alpha|^{2}} \frac{\alpha^{n}}{\sqrt{n!}}
$$

- The initial atom-field state is then

$$
|\psi(0)\rangle=|\psi(0)\rangle_{\text {atom }} \otimes|\psi(0)\rangle_{\text {field }}
$$

Collapse and revival of atomic oscillations

- The solution to Schrodinger's equation is now

$$
\begin{aligned}
|\psi(t)\rangle=\sum_{n=0}^{\infty} & \left\{\left[C_{e} C_{n} \cos (\Omega t \sqrt{n+1})-i C_{g} C_{n+1} \sin (\Omega t \sqrt{n+1})\right]|e\rangle\right. \\
& \left.+\left[-i C_{e} C_{n-1} \sin (\Omega t \sqrt{n})+C_{g} C_{n} \cos (\Omega t \sqrt{n})\right]|g\rangle\right\} \otimes|n\rangle
\end{aligned}
$$

- If we again take the case of $C_{e}=1, C_{g}=0$ then the solution may be written as

$$
|\psi(t)\rangle=\left|\psi_{g}(t)\right\rangle|g\rangle+\left|\psi_{e}(t)\right\rangle|e\rangle
$$

where

$$
\begin{gathered}
\left|\psi_{g}(t)\right\rangle|g\rangle=-i \sum_{n=0}^{\infty} C_{n} \sin (\Omega t \sqrt{n+1})|n+1\rangle \\
\left|\psi_{e}(t)\right\rangle|e\rangle=\sum_{n=0}^{\infty} \cos (\Omega t \sqrt{n+1})|n\rangle
\end{gathered}
$$

Collapse and revival of atomic oscillations

- The atomic inversion is now given by

$$
\begin{aligned}
W(t) & =\left\langle\psi_{e}(t) \mid \psi_{e}(t)\right\rangle-\left\langle\psi_{g}(t) \mid \psi_{g}(t)\right\rangle \\
& =\sum_{n=0}^{\infty}\left|C_{n}\right|^{2} \cos (2 \Omega t \sqrt{n+1}) \\
& =\sum_{n=0}^{\infty} e^{-|\alpha|^{2}} \frac{|\alpha|^{2 n}}{n!} \cos (2 \Omega t \sqrt{n+1})
\end{aligned}
$$

- The average photon number is $\bar{n}=|\alpha|^{2}$ and so we can write the inversion as

$$
W(t)=e^{-\bar{n}} \sum_{n=0}^{\infty} \frac{\bar{n}^{n}}{n!} \cos (2 \Omega t \sqrt{n+1})
$$

Collapse and revival of atomic oscillations

Collapse and revival of atomic oscillations

First experimental observation of collapse and revival

FIG. 3. The probability $P_{e}(t)$ of finding the atom in the upper maser level $63 p_{3 / 2}$ for the cavity tuned to the $63 p_{3 / 2} \leftrightarrow 61 d_{5 / 2}$ transition of ${ }^{85} \mathrm{Rb}$. The flux of Rydberg atoms is $N=500 \mathrm{~s}^{-1}$.

FIG. 1. Scheme of the experimental setup.

Coherent control of vacuum Rabi oscillations

Figure $\mathbf{4} \mid$ Rabi oscillations. $\mathbf{a}_{\text {, }}$ Measured reflection spectrum as a function of Stark laser power. \mathbf{b}. Emission intensity at cavity resonance (blue squares) and at quantum-dot resonance (green circles), determined from the data in a. c, Calculated spectrum as a function of Stark power. The Stark field is expressed as a classical Rabi frequency with peak amplitude Ω_{0}. d. Calculated emission intensity at cavity resonance (blue squares) and quantum dot (QD) resonance (green circles). Intensities are normalized by their maximum value.
[5] Nature Photon. 8, 858 (2014)

Observation of \sqrt{n} nonlinearity in a cavity QED system

Figure 3 | Vacuum Rabi mode splitting with a single photon. a, Measured resonator transmission spectra versus normalized external flux bias, Φ / Φ_{0} (bottom axis) and corresponding bias current I applied to a superconducting coil (top axis). Transmission T is colour coded: blue, low; red, high. The solid white line shows dressed state energies as obtained numerically, and the dashed lines indicate the bare resonator frequency v_{r} as well as the qubit transition frequency $v_{\text {ge }} \cdot \mathbf{b}$, Normalized resonator transmission $T / T_{\text {max }}$ at $\Phi / \Phi_{0}=1 / 2$, as indicated with arrows in \mathbf{a}, with a lorentzian line fit in red. c, Resonator transmission T versus Φ / Φ_{0} close to degeneracy. d, Vacuum Rabi mode splitting at degeneracy, with lorentzian line fit in red.

Observation of \sqrt{n} nonlinearity in a cavity QED system

Figure $4 \mid$ Vacuum Rabi mode splitting with two photons. a, Cavity transmission T as in Fig. 3 with an additional pump tone applied to the resonator input at frequency $v_{g 0,1+}$ populating the $|1+\rangle$ state. \mathbf{b}, Spectrum at $\Delta=0$, indicated by arrows in $\mathbf{a} . \mathbf{c}$, Transmission T with a pump tone applied at $v_{g 0,1-}$ populating the $|1-\rangle$ state. \mathbf{d}, Spectrum at $\Phi / \Phi_{0} \approx 0.606$, indicated by arrows in \mathbf{c}. See text for details of pump tone nomenclature.
[6] Nature 454, 315 (2008)

References

1. E. T. Jaynes \& F. W. Cummings, "Comparison of quantum and semiclassical radiation theories with application to the beam maser", Proc. IEEE 51(1), 89-109 (1963).
2. F. W. Cummings, "Stimulated Emission of Radiation in a Single Mode", Phys. Rev. 170(2), 379 (1965).
3. G. Rempe, H. Walther, and N. Klein, "Observation of quantum collapse and revival in a one-atom maser", Phys. Rev. Lett. 58(4), 353 (1987).
4. C. Nietner, "Quantum Phase Transition of Light in the Jaynes-Cummings Lattice", Diploma thesis (2010). Retrieved from http://users.physik.fu-berlin.de/ pelster/Theses/nietner.pdf
5. R. Bose, T. Cai, K. R. Choudhury, G. S. Solomon, \& E. Waks, "All-optical coherent control of vacuum Rabi oscillations", Nature Photon. 8, 858 (2014).
6. J. M. Fink, M. Goppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, \& A. Wallraff, "Climbing the Jaynes-Cummings ladder and observing its \sqrt{n} nonlinearity in a cavity QED system", Nature 454, 315 (2008).

General references

- C. Gerry \& P. Knight, Introductory Quantum Optics (Cambridge University Press, 2004).
- U. Leonhardt, Measuring the Quantum State of Light (Cambridge University Press, 2005).
- M. Fox, Quantum Optics: An Introduction (Oxford University Press, 2006).
- M. O. Scully \& M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
- M. A. Neilsen \& I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2011).
- B. Saleh \& M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2007).

