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Jaynes-Cummings model

� It’s a quantum optics model describing the interaction of a
two-level atom with a single quantized mode of an optical cavity’s
electromagnetic field.

� Initially proposed by Edwin Jaynes and Fred Cummings in 1963
[1,2].

� First experimental demonstration in 1984 by Rempe, Walther, and
Klein [3].

� It’s been popular to study as it can be solved analytically and is
easily extended. It also accurately predicts a wide range of
experiments.

� Widely used in cavity QED and circuit QED, especially in relation
to quantum information processing.
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Outline

1. Derive the Jaynes-Cummings Hamiltonian

ĤJC = h̄ωâ†â+ 1
2 h̄ω0σ̂z + h̄λ(σ̂+â+ σ̂−â

†)

2. Features of the model.
2.1 Dressed states and the Jaynes-Cummings ladder.
2.2 Vacuum-field Rabi oscillations.
2.3 Collapse and revival of atomic oscillations.

3. Experimental observations of some of the model’s features.
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Quantizing the EM field

� We will derive the free field Hamiltonian Ĥfield = h̄ωcâ
†â by

quantizing the electromagnetic field in a one-dimensional cavity. A
more thorough 10-page derivation in three dimensions can be
found in [4].

� We have to start somewhere. Let’s start with Maxwell’s equations
in free space

∇ ·E = 0 ∇ ·B = 0

∇×E = ∂B
∂t

∇×B = µ0ε0
∂E
∂t

which can be used to derive the homogeneous electromagnetic
wave equation

∇2E = 1
c2
∂E
∂t
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Quantizing the EM field

� Now consider a one-dimensional cavity along the z-axis with
perfectly conducting walls at z = 0 to z = L.

� We have to pick a polarization for the E-field so might as well pick
x̂ so that E(r, t) = Ex(z, t)x̂. The wave equation then reduces to

∂2Ex
∂z2 −

1
c2
∂Ex
∂t

= 0

� This is easily solved by separation of variables with
Ex(z, t) = Z(z)T (t) yielding a solution

Ex(z, t) =

√
2ω2

c

V ε0
q(t) sin(kz)
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Quantizing the EM field

� From Ampere’s Law

∇×B = µ0ε0
∂E
∂t

we can find the magnetic field

By(z, t) = − 1
c2

∫
∂Ex
∂t

dz =
√

2µ0
V
q̇(t) cos(kz)

where V is the effective volume of the cavity, q is a
time-dependent amplitude with units of length, and k = mπ/L for
an integer m > 0.
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Quantizing the EM field

� In this case, the classical field energy, which is equal to the
Hamiltonian, is given by

H = 1
2

∫
dV

(
ε0E2 + B2

µ0

)

= 1
2

∫
dV

(
ε0E

2
x(z, t) +

B2
y(z, t)
µ0

)

= 1
2[q̇2(t) + ω2

cq
2(t)]

which looks like the Hamiltonian for a harmonic oscillator.
(Surprise!)
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Quantizing the EM field

� Now let’s promote all our dynamical variables (q, q̇, Ex, By, H) to
operators, and we’ll denote q̇ ≡ p, giving us

Êx(z, t) =

√
2ω2

c

V ε0
q̂(t)sin(kz) B̂y(z, t) =

√
2µ0
V
p̂(t) cos(kz)

Ĥ = 1
2[q̂2(t) + ω2

c q̂
2(t)]

� Let’s introduce creation and annihilation operators

â(t) = 1√
2h̄ωc

[ωcq̂(t) + ip̂(t)] â†(t) = 1√
2h̄ωc

[ωcq̂(t)− ip̂(t)]
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Quantizing the EM field

� The electric and magnetic field can now be written as

Êx(z, t) = E0[â(t) + â†(t)] sin(kz)

B̂y(z, t) = E0[â(t)− â†(t)] cos(kz)
� More importantly, we can write the Hamiltonian as

Ĥ = Ĥfield = h̄ωc

[
â(t)â†(t) + 1

2

]
≈ h̄ωcâ(t)â†(t) = h̄ωcââ

†

� We can justify ignoring the zero-point energy due to redefining our
zero of energy to be h̄ωc/2 or if we assume that we have a lot of
field quanta (recall that n̂ = ââ† is the number operator) such that
h̄ωc/2 is negligible.
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Two-level atom Hamiltonian

� Let’s denote our two the two levels of the atom by |g〉 for the
ground state and |e〉 for the excited state, or in a vector
representation

|g〉 =
(

0
1

)
|e〉 =

(
1
0

)
� The Hamiltonian can then be written as

Ĥ = Eg |g〉 〈g|+ Ee |e〉 〈e| =
(
Ee 0
0 Eg

)

= 1
2

(
Eg + Ee 0

0 Eg + Ee

)
+ 1

2

(
Ee − Eg 0

0 −(Ee − Eg)

)

= 1
2(Eg + Ee)1̂ + 1

2(Ee − Eg)σ̂z
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Two-level atom Hamiltonian

� Writing the energy difference as h̄ωa = Ee − Eg where ωa is the
atomic transition frequency and shifting our zero of energy to
Eg + Ee because we only care about energy differences, we can
write the atomic Hamiltonian as

Ĥ = Ĥatom = 1
2 h̄ωaσ̂z
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Interaction Hamiltonian

� As always, we’ll start with Ĥ = −µ̂ · Ê so

Ĥint = −m̂u · E0(â+ â†) sin(kz)x̂
= λµ̂(â+ â†)

where λ = −
√
h̄ωc
ε0V

sin(kz).

� Recall the Pauli matrices

σ̂1 =
(

0 1
1 0

)
σ̂2 =

(
0 −i
i 0

)
σ̂3 =

(
1 0
0 −1

)

σ̂+ = σ̂1 + iσ̂2 =
(

0 1
0 0

)
σ̂− = σ̂1 − iσ̂2 =

(
0 0
1 0

)
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Interaction Hamiltonian

� We know that 〈g|µ̂|g〉 = 0 and 〈e|µ̂|e〉 = 0 due to parity. Then
expanding µ̂ in terms of the basis states {|g〉 , |e〉}, we get

µ̂ = µ |g〉 〈e|+ µ? |e〉 〈g| = µσ̂− + µσ̂+ = µ(σ− + σ+)

where we assumed without loss of generality that the matrix
element µ = µge = 〈g|µ̂|e〉 is real.

� Thus the interaction Hamiltonian can be written as

Ĥint = h̄Ω(σ̂+ + σ̂−)(â+ â†)

where

Ω = −µ
h̄

√
h̄ωc
ε0V

sin(kz)
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Interaction Hamiltonian

� In the interaction picture, the operators evolve like

â(t) = â(0)e−iωct â†(t) = â†(0)eiωct

σ̂± = σ̂±(0)e±iωat

� The Hamiltonian then becomes

Ĥint = h̄Ω(σ̂+â+ σ̂+â
† + σ̂−â+ σ̂−â

†)
= h̄Ω(σ̂+âe

i(ωa−ωc)t + σ̂+â
†ei(ωa+ωc)t

+ σ̂−âe
−i(ωa+ωc)t + σ̂−â

†e−i(ωa−ωc)t)

� The σ̂+â
† and σ̂−â terms vary much more rapidly than the other

terms and so we invoke the rotating wave approximation and drop
them. They are also unphysical.
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Interaction Hamiltonian

� We are now left with the following interaction Hamiltonian

Ĥint = h̄Ω(σ̂+â+ σ̂−â
†)

� The Jaynes-Cummings Hamiltonian is then

ĤJC = h̄ωcâ
†â+ 1

2 h̄ωaσ̂z + h̄Ω(σ̂+â+ σ̂−â
†)

just like we wanted.
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Dressed states and the Jaynes-Cummings ladder

� The interaction Hamiltonian can only cause transitions of the type
|e〉 |n〉 ←→ |g〉 |n+ 1〉 where these product states are referred to
as the bare states of the Jaynes-Cummings model.

� For fixed n the dynamics of the system are confined to the
two-dimensional space of product states {|e, n〉 , |g, n+ 1〉}.

� In this basis, 〈e, n|g, n+ 1〉 = 0, and the Hamiltonian can be
written as

Ĥ(n) =
(
nh̄ωc + 1

2 h̄ωa h̄Ω
√
n+ 1

h̄Ω
√
n+ 1 (n+ 1)ωc − 1

2 h̄ωa

)
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Dressed states and the Jaynes-Cummings ladder

� The energy eigenvalues of Ĥ(n) are given by

E±(n) =
(
n+ 1

2

)
h̄ωc ± h̄Ωn(∆)

where
Ωn(∆) =

√
∆2 + 4Ω2(n+ 1)

and ∆ = ωa − ωc is the detuning.
� On resonance ∆ = 0 and Ωn = 2Ω

√
n+ 1. So if we relabel

g0 = 2Ω
E± =

(
n+ 1

2

)
h̄ωc ±

√
n+ 1h̄g0
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Dressed states and the Jaynes-Cummings ladder

The Jaynes-Cummings ladder. Note that the {|g, n〉 , |e, n− 1〉} basis is
used here so that Ωn =

√
nh̄g0.
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Vacuum-field Rabi oscillations

� The JC Hamiltonian may be broken up into two commuting parts

ĤJC = ĤI + ĤII

where
ĤI = h̄ωcâ

†â+ 1
2 h̄ωaσ̂z

ĤII = h̄Ω(σ̂+â+ σ̂−â
†)

such that [ĤI, ĤII] = 0.
� All the dynamics are contained in the second part ĤII.
� Let the initial state of the field-atom system be |i〉 = |e, n〉 and the

final state be |f〉 = |g, n+ 1〉.
� The state vector may then be written

|ψ(t)〉 = Ci |i〉+ Cf |f〉
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Vacuum-field Rabi oscillations

� The Schrodinger equation in the interaction picture states that

ih̄
d |ψ(t)〉
dt

= ĤII |ψ(t)〉

� This allows us to write down differential equations for the
coefficients

Ċi = −iΩ
√
n+ 1Cf

Ċf = −iΩ
√
n+ 1Ci

or after plugging one into the other,

C̈i + Ω2(n+ 1)Ci = 0

� We’ll impose the initial conditions Ci(0) = 1 and Cf (0) = 0.
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Vacuum-field Rabi oscillations

� Solving the pair of harmonic-oscillator-looking equations we get

Ci(t) = cos
(
Ωt
√
n+ 1

)
Cf (t) = −i sin

(
Ωt
√
n+ 1

)
� Thus the solution is

|ψ(t)〉 = cos
(
Ωt
√
n+ 1

)
|e, n〉 − i sin

(
Ωt
√
n+ 1

)
|g, n+ 1〉

� The probability the system remains in the ground state is

Pi(t) = |Ci(t)|2= cos2
(
Ωt
√
n+ 1

)
while the probability it makes a transition to the excited state is

Pi(t) = |Ci(t)|2= sin2
(
Ωt
√
n+ 1

)
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Vacuum-field Rabi oscillations

� The atomic inversion is given by

W (t) = Pi(t)− Pf (t) = cos
(
2Ωt
√
n+ 1

)
� These are Rabi oscillations with frequency ω(n) = 2Ω

√
n+ 1.

� We notice that even in the absence of light, i.e. n = 0, there is still
a non-zero transition probability

W (t)|n=0= cos (2Ωt)

� These vacuum-field Rabi oscillations are purely quantum
mechanical and are the result of the atom spontaneously emitting
a photon and absorbing it, then re-emitting it, etc.
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Fock states

� To look at the collapse and revival of atomic oscillations, we will
first have to look at Fock states and coherent states.

� Fock states, or |n〉, are eigenstates of the photon number operator

n̂ |n〉 = n |n〉 ,
∞∑
n=0
|n〉 〈n| = 1, 〈n|n′〉 = δnn′

� We know that

â |n〉 =
√
n |n− 1〉 â† |n〉 =

√
n+ 1 |n+ 1〉

and so excited states or Fock states can be written in terms of the
vacuum state

|n〉 = (â†)n√
n!
|0〉

23 / 37



Coherent states

� Coherent states are eigenstates of the annihilation operator

â |α〉 = α |α〉

� They have well-defined amplitudes |α| and phases Argα. Since â
is not Hermitian, the eigenvalues α may be complex and
correspond to complex wave amplitudes in classical optics.

� We would like to express coherent states |α〉 in terms of Fock
states |n〉. To do so, we’ll introduce the displacement operator

D̂(α) = eαâ
†−α?â

� It is called so because it displaces the amplitude â by the complex
number α

D̂†(α)âD̂(α) = â+ α
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Coherent states

� This implies that
D̂(−α) |α〉 = |0〉

or that coherent states are simply displaced vacuum states

|α〉 = D̂(α) |0〉

� Recall the Baker-Campbell-Hausdorff formula

eÂ+B̂ = e−
[Â,B̂]

2 eÂeB̂

� We can now split the displacement operator like

D̂(α) = e−
1
2 |α|

2
eαâ

†
e−α

?â
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Coherent states

� Acting with it on the vacuum to displace it, we get that

|α〉 = D̂(α) |0〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉

� The Fock representation shows that a coherent state has
Poissonian photon statistics

Pn = |〈n|α〉 |2= |α|
2n

n! e−|α|
2
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Collapse and revival of atomic oscillations

� Let’s now consider more general (and interesting) dynamics.
� Let’s assume the atom is initially in a superposition

|ψ(0)〉atom = Cg |g〉+ Ce |e〉

� And let’s assume the field is initially in a coherent state

|ψ(0)〉field =
∞∑
n=0

Cn |n〉 , Cn = e−
1
2 |α|

2 αn√
n!

� The initial atom-field state is then

|ψ(0)〉 = |ψ(0)〉atom ⊗ |ψ(0)〉field
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Collapse and revival of atomic oscillations

� The solution to Schrodinger’s equation is now

|ψ(t)〉 =
∞∑

n=0

{[
CeCn cos

(
Ωt
√
n+ 1

)
− iCgCn+1 sin

(
Ωt
√
n+ 1

)]
|e〉

+
[
−iCeCn−1 sin

(
Ωt
√
n
)

+ CgCn cos
(
Ωt
√
n
)]
|g〉
}
⊗ |n〉

� If we again take the case of Ce = 1, Cg = 0 then the solution may
be written as

|ψ(t)〉 = |ψg(t)〉 |g〉+ |ψe(t)〉 |e〉
where

|ψg(t)〉 |g〉 = −i
∞∑
n=0

Cn sin
(
Ωt
√
n+ 1

)
|n+ 1〉

|ψe(t)〉 |e〉 =
∞∑
n=0

cos
(
Ωt
√
n+ 1

)
|n〉
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Collapse and revival of atomic oscillations

� The atomic inversion is now given by

W (t) = 〈ψe(t)|ψe(t)〉 − 〈ψg(t)|ψg(t)〉

=
∞∑
n=0
|Cn|2cos

(
2Ωt
√
n+ 1

)
=
∞∑
n=0

e−|α|
2 |α|2n

n! cos
(
2Ωt
√
n+ 1

)
� The average photon number is n̄ = |α|2 and so we can write the

inversion as

W (t) = e−n̄
∞∑
n=0

n̄n

n! cos
(
2Ωt
√
n+ 1

)
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Collapse and revival of atomic oscillations
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Collapse and revival of atomic oscillations
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First experimental observation of collapse and revival

[3] Phys. Rev. Lett. 58(4), 353 (1987)
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Coherent control of vacuum Rabi oscillations

[5] Nature Photon. 8, 858 (2014)
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Observation of
√

n nonlinearity in a cavity QED system

[6] Nature 454, 315 (2008)34 / 37



Observation of
√

n nonlinearity in a cavity QED system

[6] Nature 454, 315 (2008)

35 / 37



References
1. E. T. Jaynes & F. W. Cummings, “Comparison of quantum and

semiclassical radiation theories with application to the beam maser”,
Proc. IEEE 51(1), 89-109 (1963).

2. F. W. Cummings, “Stimulated Emission of Radiation in a Single Mode”,
Phys. Rev. 170(2), 379 (1965).

3. G. Rempe, H. Walther, and N. Klein, “Observation of quantum collapse
and revival in a one-atom maser”, Phys. Rev. Lett. 58(4), 353 (1987).

4. C. Nietner, “Quantum Phase Transition of Light in the Jaynes-Cummings
Lattice”, Diploma thesis (2010). Retrieved from
http://users.physik.fu-berlin.de/ pelster/Theses/nietner.pdf

5. R. Bose, T. Cai, K. R. Choudhury, G. S. Solomon, & E. Waks,
“All-optical coherent control of vacuum Rabi oscillations”, Nature
Photon. 8, 858 (2014).

6. J. M. Fink, M. Goppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, & A.
Wallraff, “Climbing the Jaynes–Cummings ladder and observing its

√
n

nonlinearity in a cavity QED system”, Nature 454, 315 (2008).
36 / 37

http://users.physik.fu-berlin.de/~pelster/Theses/nietner.pdf


General references

� C. Gerry & P. Knight, Introductory Quantum Optics (Cambridge
University Press, 2004).

� U. Leonhardt, Measuring the Quantum State of Light (Cambridge
University Press, 2005).

� M. Fox, Quantum Optics: An Introduction (Oxford University Press,
2006).

� M. O. Scully & M. S. Zubairy, Quantum Optics (Cambridge University
Press, 1997).

� M. A. Neilsen & I. L. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, 2011).

� B. Saleh & M. C. Teich, Fundamentals of Photonics (Wiley-Interscience,
2007).

37 / 37


