Jaynes-Cummings Model

Ali Ramadhan

Nonlinear Optics presentation

University of Waterloo

March 22, 2016

1/37



Jaynes-Cummings model

B |t's a quantum optics model describing the interaction of a
two-level atom with a single quantized mode of an optical cavity's
electromagnetic field.

m |nitially proposed by Edwin Jaynes and Fred Cummings in 1963
[1,2].

® First experimental demonstration in 1984 by Rempe, Walther, and
Klein [3].

B |t's been popular to study as it can be solved analytically and is
easily extended. It also accurately predicts a wide range of
experiments.

® Widely used in cavity QED and circuit QED, especially in relation
to quantum information processing.
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Outline

1. Derive the Jaynes-Cummings Hamiltonian
N RS . XA A At
Hjc = hwa'a + §hwoaz + hX(6ra+6_a')

2. Features of the model.
2.1 Dressed states and the Jaynes-Cummings ladder.

2.2 Vacuum-field Rabi oscillations.
2.3 Collapse and revival of atomic oscillations.

3. Experimental observations of some of the model’s features.
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Quantizing the EM field

= We will derive the free field Hamiltonian ﬁﬁeld = hw.ala by
quantizing the electromagnetic field in a one-dimensional cavity. A
more thorough 10-page derivation in three dimensions can be
found in [4].

= We have to start somewhere. Let's start with Maxwell’s equations
in free space

V-E=0 V-B=0
OB OE
VxE=" V x B = jipey —
. ot x Hoco 54

which can be used to derive the homogeneous electromagnetic

wave equation

1 OE
2 [P —
VE_C2 Ot
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Quantizing the EM field

® Now consider a one-dimensional cavity along the z-axis with
perfectly conducting walls at z=0to z = L.

= We have to pick a polarization for the E-field so might as well pick
% so that E(r,t) = E;(z,t)X. The wave equation then reduces to

PE, 10E, _ 0
022 2 ot
® This is easily solved by separation of variables with
E.(z,t) = Z(2)T(t) yielding a solution

Qw2 )
E.(z,t) = Ve;q(t) sin(kz)
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Quantizing the EM field

® From Ampere's Law

OE
VxB= ,U,OEOE

we can find the magnetic field

1 [0E, 2u0 .
By(z,t) = 2 Wdz = \/%(](t) cos(kz)

where V' is the effective volume of the cavity, ¢ is a
time-dependent amplitude with units of length, and k = mmx /L for
an integer m > 0.
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Quantizing the EM field

® |n this case, the classical field energy, which is equal to the
Hamiltonian, is given by

2
H:l/dv<eoE2+B—>
2 1o

1 B2(z,t
= —/dV <eOE§(z,t) + M)
2 1o
1.
= 5ld*(®) +wid* (1))
which looks like the Hamiltonian for a harmonic oscillator.
(Surprise!)
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Quantizing the EM field

= Now let's promote all our dynamical variables (¢, ¢, E,, By, H) to
operators, and we'll denote ¢ = p, giving us

A 202 - 2
Eu(et) =\ God®)sin(k) - By(e,t) = [ J7p(1) cos(hz)

A = S (0) + w20

® Let's introduce creation and annihilation operators

(1) = —gloed(0) +i0(0)] 1) = —s—luei(t) = (1)



Quantizing the EM field

® The electric and magnetic field can now be written as
Ey(z,t) = Eola(t) + af(t)] sin(kz2)

By(2,t) = Eola(t) — a'(t)] cos(k2)

® More importantly, we can write the Hamiltonian as
N N 1
H = Hpelq = hwe [d(t)&T (t) + 5] ~ hwea(t)al(t) = hweaal

® We can justify ignoring the zero-point energy due to redefining our
zero of energy to be hw./2 or if we assume that we have a lot of
field quanta (recall that 72 = aa' is the number operator) such that
hw./2 is negligible.
937
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Two-level atom Hamiltonian

® Let's denote our two the two levels of the atom by |g) for the
ground state and |e) for the excited state, or in a vector

representation
0 1

® The Hamiltonian can then be written as

A1 = By lg) (9] + Eele) {el = (]f; EO)

_1(E,+E. 0 L L (Be—Ey 0
2 0 E,+E.) " 2 0 —(E. — Ey)

1 ~ 1 .
= é(Eg + Ee)]]. + §(Ee - Eg)O'z
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Two-level atom Hamiltonian

= Writing the energy difference as hw, = E. — E, where w, is the
atomic transition frequency and shifting our zero of energy to
E, + E. because we only care about energy differences, we can
write the atomic Hamiltonian as

N 1.
H = Hutom = §hwa0z

11/ 37



Interaction Hamiltonian

A

= As always, we'll start with H = —i- E so
_.l_

Hin, = Eo(a + a') sin(kz)
ﬂ(@ a’)
hw,
h = —/ in(kz).
where \ oV (k2)

m Recall the Pauli matrices
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Interaction Hamiltonian

= We know that (g|filg) = 0 and (e|fi|e) = 0 due to parity. Then
expanding /i in terms of the basis states {|g), |e)}, we get

i =plg) (el + p*le) (g| = po— + po4 = plo- +o4)

where we assumed without loss of generality that the matrix
element 1 = fige = (g|ftle) is real.
® Thus the interaction Hamiltonian can be written as

Hipy = R (64 + 6 )(@+&T)

W[ hwe
Q= _ﬁ eO_V Sll’l(k'Z)

where
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Interaction Hamiltonian

B |n the interaction picture, the operators evolve like

a(t) = a(0)e ™ al(t) =al(0)e™"

® The Hamiltonian then becomes

A

Hy = hQ(6 0+ 644" +6_a+6_al)
= hQ(&+&ei(wa—wc)t + 5_+d’rei(wa+wc)t

+ a__&e—i(wa—l-wc)t + a._d'f’e—i(wa—wc)t)

= The 6,4 and 5_a terms vary much more rapidly than the other
terms and so we invoke the rotating wave approximation and drop

them. They are also unphysical.
14 / 37



Interaction Hamiltonian

= We are now left with the following interaction Hamiltonian
Hi = hQ(64a + 6_a)
® The Jaynes-Cummings Hamiltonian is then
Hjc = hweata + %hwaaz + Q6,40+ 6_ah)

just like we wanted.
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Dressed states and the Jaynes-Cummings ladder

® The interaction Hamiltonian can only cause transitions of the type
le) [n) «— |g) |n + 1) where these product states are referred to
as the bare states of the Jaynes-Cummings model.

® For fixed n the dynamics of the system are confined to the
two-dimensional space of product states {|e,n),|g,n + 1)}.

® In this basis, (e,n|g,n 4+ 1) =0, and the Hamiltonian can be

written as
f{(n) - nhwc + %hwa thn +1
T\ VR + T (n+ Dwe — $hw,
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Dressed states and the Jaynes-Cummings ladder

® The energy eigenvalues of H® are given by
1
Ei(n) = <n + 5) hwe £ hQy(A)

where

Qu(A) = A2 +402(n + 1)
and A = w, — w, is the detuning.

® On resonance A = 0 and ,, = 2Qv/n + 1. So if we relabel
go = 282

1
Ey = <n+ 5) hw: = vn + 1hgg
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Dressed states and the Jaynes-Cummings ladder

Coupled

- * \n ng,

+3 ng,

+1\2 kg,

+hg,

Uncoupled
)
3 "
N M
Gt .
5 — M
2 13)
5 3t
8 2)
5 2f
8 [
R le)
[0)
0= 2>
Atom Photons

Dressed
states

The Jaynes-Cummings ladder. Note that the {|g,n),|e,n — 1)} basis is

used here so that Q,, = /nhgo.

18 / 37



Vacuum-field Rabi oscillations

The JC Hamiltonian may be broken up into two commuting parts
ﬁJc = ﬁl + lﬁfn
where 1
H; = hweala + 5w

Hy = hQ(6 a4+ 6_al)
such that [ﬁl,ﬁn] =0.
® All the dynamics are contained in the second part ﬁn.
m Let the initial state of the field-atom system be |i) = |e,n) and the
final state be |f) = |g,n + 1).
® The state vector may then be written

[(t)) = Cili) + Cr|f)
19 /37
L



Vacuum-field Rabi oscillations

® The Schrodinger equation in the interaction picture states that

)
ih 7

= Hir[v(t))
® This allows us to write down differential equations for the
coefficients '
Cz' = —iQ\/TL + ICf
C’f = —1iQvn+ 1C;

or after plugging one into the other,
CZ + 92(71 + 1)01 =0

= We'll impose the initial conditions C;(0) = 1 and Cf(0) = 0.
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Vacuum-field Rabi oscillations

® Solving the pair of harmonic-oscillator-looking equations we get
C;(t) = cos <Qt\/n + 1)
Cp(t) = —isin (Qt/n +1)

® Thus the solution is
[1(t)) = cos (Qt\/n——i-l) le,n) — isin (Qt\/n——|—1> lg,n + 1)
® The probability the system remains in the ground state is
Py(t) = |Ci(t)*= cos? (t/n +1)
while the probability it makes a transition to the excited state is
Pi(t) = |Ci(t) = sin? (Qtv/n +1)

21 /37
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Vacuum-field Rabi oscillations

® The atomic inversion is given by
W (t) = P;(t) — Ps(t) = cos (QQt\/n + 1)

® These are Rabi oscillations with frequency w(n) = 2Qv/n + 1.

= We notice that even in the absence of light, i.e. n =0, there is still
a non-zero transition probability

W (t)|n=0= cos (20t)

® These vacuum-field Rabi oscillations are purely quantum
mechanical and are the result of the atom spontaneously emitting
a photon and absorbing it, then re-emitting it, etc.
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Fock states

® To look at the collapse and revival of atomic oscillations, we will
first have to look at Fock states and coherent states.

® Fock states, or |n), are eigenstates of the photon number operator

f|n) =n|n), Z In) (n| =1, (n|n') = dpw
n=0
= We know that

aln)=viln—-1  alln)=va+ijn+1)

and so excited states or Fock states can be written in terms of the
vacuum state

3

ah)

—
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Coherent states

m Coherent states are eigenstates of the annihilation operator
ila) = ala)

® They have well-defined amplitudes |«| and phases Arg . Since a
is not Hermitian, the eigenvalues a may be complex and
correspond to complex wave amplitudes in classical optics.

m We would like to express coherent states |«) in terms of Fock
states |n). To do so, we'll introduce the displacement operator

D(a) _ ea&T—a*d

B |t is called so because it displaces the amplitude @ by the complex
number «

Di(@)aD(a) = a + «
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Coherent states

® This implies that
D(~a)a) = [0)

or that coherent states are simply displaced vacuum states
la) = D(a) |0)

® Recall the Baker-Campbell-Hausdorff formula

b _IABl 4 g
€A+B:€ 2 €A€B

= We can now split the displacement operator like

A

D(a) = e7zloPead —o%a
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Coherent states

® Acting with it on the vacuum to displace it, we get that

o) = D(a) |0) —e—-'a'2zf|n

® The Fock representation shows that a coherent state has
Poissonian photon statistics

’a|2n 2
Py = |(nfa) = ——e7l
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Collapse and revival of atomic oscillations

® Let's now consider more general (and interesting) dynamics.

B |et's assume the atom is initially in a superposition

|1/1(0)>atom =0y lg) + Cele)

® And let's assume the field is initially in a coherent state
& 11,12 &
|¢(0)>ﬁeld = Z Cplny, Cn= e 2l
n=0

® The initial atom-field state is then

[%(0)) = [#(0)) atom © [¥(0)) e
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Collapse and revival of atomic oscillations

® The solution to Schrodinger's equation is now

) = i {[CeCh cos (QtVn + 1) — iCyChrp sin (QvVn +1)] |e)

+ [iCeCh1 sin (Qy/n) + C4C,, cos (Qtv/n)] |g) } @ |n)

" If we again take the case of C, = 1, C; = 0 then the solution may
be written as

[9(8)) = |g(£)) |g) + |9e(t)) |e)

where

e () 19) = —lZC sin (QtW) In+1)

e (t) Z cos (v +1) [n)
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Collapse and revival of atomic oscillations

® The atomic inversion is now given by
W(t) = (e()[the(t)) — (Wg(t)thg (1))
— Z|Cn|2cos (QQt\/n—-l—1>
n=0

e 2|
= Z el e cos (ZQt\/n + 1)
n=0 '

= The average photon number is 72 = |a|? and so we can write the
inversion as

W(t)=e™ i Z—T cos <2Qt\/n + 1)
n=0 """
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Collapse and revival of atomic oscillations

n=10

W (t)

40}

At



Collapse and revival of atomic oscillations

|

44

10, n:65

0.5
-05
-1.0
0 50
1/37

-




First experimental observation of collapse and revival
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FIG. 1. Scheme of the experimental setup.
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FIG. 3. The probability P.(z) of finding the atom in the
upper maser level 63ps; for the cavity tuned to the
63[)3/2‘—'61!15/1 transition of #*Rb. The flux of Rydberg atoms
is N=500s

[3] Phys. Rev. Lett. 58(4), 353 (1987)



Coherent control of vacuum Rabi oscillations
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Figure 4 | Rabi oscillations. a, Measured reflection spectrum as a function of Stark laser power. b, Emission intensity at cavity resonance (blue squares) and
at quantum-dot resonance (green circles), determined from the data in a. €, Calculated spectrum as a function of Stark power. The Stark field is expressed
as a classical Rabi frequency with peak amplitude €25, d, Calculated emission intensity at cavity resonance (blue squares) and quantum dot (QD) resonance
(green circles). Intensities are normalized by their maximum value.

[5] Nature Photon. 8, 858 (2014)
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Observation of \/n nonlinearity in a cavity QED system

d
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Figure 3 | Vacuum Rabi mode splitting with a single photon. a, Measured
resonator transmission spectra versus normalized external flux bias, @/®,
(bottom axis) and corresponding bias current I applied to a superconducting
coil (top axis). Transmission T'is colour coded: blue, low; red, high. The solid
white line shows dressed state energies as obtained numerically, and the
dashed lines indicate the bare resonator frequency v, as well as the qubit
transition frequency vg.. b, Normalized resonator transmission T/ Ty, at
@|P, = 1/2, as indicated with arrows in a, with a lorentzian line fit in red.
¢, Resonator transmission T versus @/®, close to degeneracy. d, Vacuum
Rabi mode splitting at degeneracy, with lorentzian line fit in red.
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Observation of \/n nonlinearity in a cavity QED system

Frequency, v (GHz)

35 /37

b d
19.0) — |14+ 1g.0) = [1+)
=
T
[14) — [2+) o E
<
= [1-) = [2-)
F
9
2
5]
S
E g g.0) — [1-)
i
lg.0) = 1)
11=) = [f,0)
6
0.598 0.602 0.606 0 0.01 0.598 0.602 0.606 0 0.01
Flux bias, &/, Transmission, T/T, . Flux bias, d/d, Transmission, T/T, .

Figure 4 | Vacuum Rabi mode splitting with two photons. a, Cavity
transmission T as in Fig. 3 with an additional pump tone applied to the
resonator input at frequency v, + populating the |1+) state. b, Spectrum at
A =0, indicated by arrows in a. ¢, Transmission T with a pump tone applied
at vg,1 - populating the |1-) state. d, Spectrum at &/®, =~ 0.606, indicated
by arrows in c. See text for details of pump tone nomenclature.

[6] Nature 454, 315 (2008)
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