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Abstract15

We explore how neural differential equations (NDEs) may be trained on highly resolved16

fluid-dynamical models of unresolved scales providing an ideal framework for data-driven17

parameterizations in climate models. NDEs overcome some of the limitations of tradi-18

tional neural networks (NNs) in fluid dynamical applications in that they can readily in-19

corporate conservation laws and boundary conditions and are stable when integrated over20

time. We advocate a method that employs a ‘residual’ approach, in which the NN is used21

to improve upon an existing parameterization through the representation of residual fluxes22

which are not captured by the base parameterization. This reduces the amount of train-23

ing required and providing a method for capturing up-gradient and nonlocal fluxes. As24

an illustrative example, we consider the parameterization of free convection of the oceanic25

boundary layer triggered by buoyancy loss at the surface. We demonstrate that a sim-26

ple parameterization of the process — convective adjustment — can be improved upon27

by training a NDE against highly resolved explicit models, to capture entrainment fluxes28

at the base of the well-mixed layer, fluxes that convective adjustment itself cannot rep-29

resent. The augmented parameterization outperforms existing commonly used param-30

eterizations such as the K-Profile Parameterization (KPP). We showcase that the NDE31

performs well independent of the time-stepper and that an online training approach us-32

ing differentiable simulation via the Julia scientific machine learning software stack im-33

proves accuracy by an order-of-magnitude. We conclude that NDEs provide an excit-34

ing route forward to the development of representations of sub-grid-scale processes for35

climate science, opening up myriad new opportunities.36

Plain Language Summary37

Even with today’s immense computational resources, climate models cannot resolve38

every cloud in the atmosphere or eddying swirl in the ocean. However, collectively these39

small-scale turbulent processes play a key role in setting Earth’s climate. Climate mod-40

els attempt to represent unresolved scales via surrogate models known as parameteri-41

zations. However, these parameterizations have limited fidelity and can exhibit struc-42

tural deficiencies. Here we demonstrate that neural differential equations (NDEs) may43

be trained on highly resolved fluid-dynamical models of unresolved scales and act as data-44

driven parameterizations in an ocean model. NDEs overcome limitations of traditional45

neural networks in fluid dynamical applications in that they can incorporate conserva-46
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tion laws and are stable when integrated for long times. We argue that NDEs provide47

a new route forward to the development of surrogate models for climate science, open-48

ing up exciting new opportunities.49

1 Introduction: The parameterization challenge in climate modeling50

As is often the case in science and engineering problems which address complex sys-51

tems, numerical models have become central to the study of Earth’s climate (Hourdin52

et al., 2017). Climate models have historically been skillful at projecting changes in global53

mean surface temperature (Hausfather et al., 2020). However, they often have regional54

deficiencies and biases which compromise future projections, especially on regional and55

local scales (C. Wang et al., 2014). Unfortunately, more certain regional and local in-56

formation is precisely what is needed to make better decisions designed to mitigate and57

adapt to the effects of climate change (Katz et al., 2013).58

A major source of uncertainty in climate projections is due to missing physics, that59

is small-scale physical processes that cannot be resolved in climate models, such as cloud60

formation in the atmosphere (Stevens & Bony, 2013) and small-scale boundary layer tur-61

bulence (DuVivier et al., 2018) and mixing by mesoscale eddies in the ocean (Griffies et62

al., 2015). Such unresolved physical processes must be represented somehow if one is to63

faithfully model the evolution of Earth’s climate. Instead of explicitly resolving such phe-64

nomena, which is computationally not feasible (Schneider et al., 2017), a more compu-65

tationally efficient surrogate model, or parameterization, is employed to represent their66

transport properties.67

Parameterization schemes are typically developed through guidance from theory68

and observations but necessarily have an empirical flavor to them. For example, small-69

scale oceanic boundary layer turbulence cannot be resolved due to prohibitive compu-70

tational costs; the coarse-grained equations are not closed and so empirical choices must71

be made in developing parametric representations. In the case of cloud formation, cloud72

microphysics and entrainment processes are not fully understood and so again, empir-73

ical choices must be made. Each parameterization thus inevitably has associated with74

it uncertain parameters — such as mixing length scales or an exponent in a scaling law75

— whose values must be prescribed but which are often difficult to infer from observa-76

tions and associated with large uncertainties.77
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Embedding multiple parameterizations into a climate model to represent myriad78

unresolved scales thus introduces many free parameters that must be jointly estimated.79

The parameters may be correlated and point estimates of the optimal parameter values80

may be impossible, further complicating the calibration process (Souza et al., 2020). One81

common tuning procedure is to modify the parameters in an empirical fashion, but guided82

by intuition and understanding, in an effort to tune the climate model to reproduce the83

climate of the 20th century (Hourdin et al., 2017) during which global observations are84

available. Once the model has been calibrated on historical data it is then used to ex-85

trapolate into the future. It is clear that such projections must necessarily be compro-86

mised due to the uncertainty introduced by parameterizations of unresolved scales.87

Previous data-driven approaches to improving the fidelity of parameterizations have88

been undertaken. Souza et al. (2020) attempted to automatically calibrate and quan-89

tify the uncertainty in a parameterization of oceanic convection using simulated data from90

high-resolution large-eddy simulations (LES). They learned that the parameterization91

of interest was structurally deficient because the optimal value of the parameters depended92

on the physical scenario. This finding suggests that some parameterizations may not be93

calibrated due to structural deficiencies. In such a case, developing a new parameteri-94

zation would seem desirable.95

Rasp et al. (2018) trained a neural network to represent all atmospheric sub-grid96

processes in a climate model with explicit convection. Though the trained model could97

potentially surpass the parameterizations that it learned from in speed, it could not im-98

prove on their accuracy. Using a single model to substitute for parameterizations of mul-99

tiple processes also degrades interpretibility because if the neural network behaves in un-100

expected ways then it is very difficult to ascertain underlying reasons. If neural networks101

do not exactly obey conservation laws, solutions can drift from reality ultimately lead-102

ing to numerical instability or blowup. Gentine et al. (2018) improved the approach by103

training a neural network to learn atmospheric moist convection from many superparam-104

eterized simulations that explicitly resolve moist convection. However, the 2D superpa-105

rameterized models do not always faithfully resolve the inherently 3D nature of atmo-106

spheric moist convection and their neural network also does not obey conservation laws.107

O’Gorman and Dwyer (2018) train a random forest to parameterize moist convec-108

tion which has the advantage of obeying conservation laws and preserving the non-negativity109
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of precipitation. However, random forests make predictions by matching current inputs110

to previously trained-upon inputs using an ensemble of decision trees. Such an approach111

can lead to a very large memory footprint and so be computationally demanding if trained112

on copious data. Furthermore, random forests do not readily generalize outside the train-113

ing set. They find that training on a warm climate leads to skillful predictions for a colder114

climate because the extra-tropics of the warm climate provide training data for the trop-115

ics of the control climate. This reminds us of the need to train on a wide range of phys-116

ical scenarios. Yuval et al. (2021) extend the approach but switch to using a neural net-117

work. They train the neural network to predict coarse-grained subgrid fluxes rather than118

tendencies and so are able to obey conservation laws. They find that the NN performs119

similarly to the random forest while using much less memory.120

Bolton and Zanna (2019) train a 2D convolution neural network on subgrid eddy121

momentum forcings from an idealized high-resolution quasi-geostrophic ocean model mimic-122

ing a double gyre setup such as the Gulf Stream in the North Atlantic. They find it is123

capable of generalizing to differing viscosities and wind forcings. However, global mo-124

mentum conservation must be enforced via a post-processing step to obtain optimal re-125

sults. Zanna and Bolton (2020) take a different approach and attempt to learn analytic126

closed-form expressions for eddy parameterizations with embedded conservation laws.127

The learned parameterization resembles earlier published closures but is less stable than128

the convolutional neural network approach. Thus, it not yet clear that equation discov-129

ery will necessarily lead to improved parameterization schemes, or that training on quasi-130

geostrophic models can be transferred to ocean models based on more complete equa-131

tion sets.132

Taking a different approach to previous studies, here we describe a new route to133

developing data-driven parameterization in which neural differential equations (NDEs)134

are used to augment simple and robust existing parameterizations. The NDEs are trained135

on high-resolution simulations of turbulence in the surface boundary layer of the ocean136

and embedded into an ocean model. We describe an encouraging proof-of-concept ex-137

ploration applied to free convection in the turbulent oceanic boundary layer similar in138

spirit to Souza et al. (2020). We outline next steps and suggest a strategy to tackle more139

difficult parameterization problems.140
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Our paper is set out as follows. In section 2 we introduce the concept of NDEs and141

how they might be used to augment and improve existing parameterization schemes. In142

section 3 we set up an NDE which will be used to improve a simple convective adjust-143

ment parameterization of free convection. In section 4 we describe how training data can144

be generated from high-resolution LES simulations of the ocean boundary layer. Section145

5 describes how the NDE is trained on this LES data using two different methods. In146

section 6 we compare the fidelity and performance of the trained NDE to commonly used147

parameterizations. In section 7 we explore different neural network architectures to in-148

vestigate whether nonlocality is important for the representation of free convection and149

to investigate the robustness of our approach to changes in neural network architecture.150

In section 8 we discuss the advantages NDEs more broadly and discuss ways in which151

we might improve the performance and interpretability of our approach. Finally, we sum-152

marise and discuss how NDEs might be applied to more complex and challenging pa-153

rameterization problems.154

2 Why use neural differential equations?155

2.1 What are neural differential equations?156

Machine learning techniques have recently gained great popularity in the model-157

ing of physical systems because of their sometimes limited ability to automatically learn158

nonlinear relationships from data. However, although very promising, machine learning159

techniques have some notable disadvantages, such as their inability to extrapolate out-160

side the parameter range of the traning data (Barnard & Wessels, 1992) and their lack161

of physical interpretation (Fan et al., 2021). Fortunately, recent work has shown that such162

concerns can be overcome, or at least ameliorated, by embedding prior structural knowl-163

edge into the machine learning framework (Xu et al., 2020). In the context of scientific164

models, the universal differential equation (Rackauckas et al., 2020) approach mixes known165

differential equation models with universal function approximators (such as neural net-166

works) and demonstrates the ability to learn from less data and be more amenable to167

generalization. In this paper we will define a neural differential equation (NDE) as a dif-168

ferential equation where at least one term contains a neural network. The neural net-169

work contains free parameters that must be inferred for the NDE to produce useful pre-170

dictions and be a useful model. Because they are phrased as a differential equation model,171

NDEs match the mechanistic form of physical laws, allowing for interpretability whilst172
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presenting a learnable structure. Section 3 showcases how this NDE architecture allows173

for combining prior knowledge that inform existing parameterizations directly with neu-174

ral networks. NDEs are trained by performing automatic differentiation through a dif-175

ferential equation solver provided by the Julia scientific machine learning (SciML) soft-176

ware stack (Rackauckas & Nie, 2017).177

2.2 Data-driven parameterizations using a residual model178

The NDE approach has great promise, we believe, because many parameterizations179

of unresolved processes in climate modeling can be posed as a partial differential equa-180

tion (PDE) with known terms and boundary conditions, but also unknown or incompletely181

known terms. Our approach is to include the known physics explicitly but to employ neu-182

ral networks to represent all remaining terms. The neural network is trained on data—either183

observational or, as here, synthetic data from high-resolution simulations—that resolves184

the missing processes.185

One might be tempted to use a neural network to capture all the turbulent fluxes186

of unresolved processes. Indeed perhaps a large enough network could be trained on enough187

data for this to be accomplished. However, the amount of data required may be prohibitively188

large and the resulting trained network might be larger than necessary. Instead, it is more189

efficient to harness as much physical knowledge as possible and deploy the neural net-190

work to learn physics that is difficult to parameterize. Such an approach also greatly re-191

duces the burden on the neural network in terms of its training, which can be a great192

burden on computational resources.193

The approach we take here, is to adopt an existing theory-driven base parameter-194

ization that encapsulates the robust physics in a simple, interpretable manner and aug-195

ment it with a neural network that predicts the unresolved physics. In this way the NDE196

can only improve upon the parameterization adopted.197

It is important that the neural network and the NDE in to which it is embedded,198

is constructed in such a manner that it obeys all pertinent physical laws, such as any con-199

servation principles and boundary conditions. For example, a base parameterization might200

be responsible for predicting the flux of some quantity, for example temperature T which,201

in the application here, is the turbulent flux of heat. The neural network should not add202

or remove any heat from the domain, but only redistribute it within the interior. To en-203
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code this idea as a conservation law, we write the right-hand-side (RHS) of the temper-204

ature tendency equation as the divergence of a flux F thus205

∂tT = ∇ · F (1)

enabling us to guarantee conservation by applying appropriate boundary conditions206

at the edges of the domain. The neural network responsible for predicting a component207

of the fluxes then only redistributes properties, and does not act as a source or a sink.208

Surface fluxes can then be prescribed as boundary conditions.209

Since we know some of the robust physics that enters the RHS, but not all of the210

physics, we separate the flux out as211

F = Fparam + Fmissing (2)

where Fparam will be computed using an existing base parameterization while212

Fmissing = NN(prognostic variables, surface fluxes, · · · ) (3)

will be predicted by the neural network NN using available information such as the213

current state of the prognostic variables, surface fluxes and boundary conditions, etc. Note214

that NN, denoted such since we are using neural networks, need not be a neural network215

and could be any function approximator such as a Gaussian process or a polynomial se-216

ries.217

The guiding principles taken here are that:218

• Fparam should be simple and based on robust well-known physics, and that219

• the neural network is only employed to address the complicated stuff or missing220

physics we do not know how to represent.221

Note that studying the fluxes predicted by the neural network could lead to an im-222

proved understanding of the missing physics and hence lead to the development of bet-223

ter structured parameterizations, whether they be theory-driven or data-driven.224
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One major advantage of taking such a residual parameterization approach is that225

an existing base parameterization can be readily used to provide an excellent first guess226

using, for example, down-gradient mixing assumptions. The neural network can then fo-227

cus on predicting (hopefully smaller) residual fluxes, reducing the amount of training re-228

quired. Moreover, the neural network can potentially capture up-gradient fluxes and non-229

local effects which are typically difficult to model using existing structured closures.230

In the remainder of our paper we put these ideas in to practice in the context of231

free convection within an initially stratified, resting patch of ocean subject to heat loss232

at its upper boundary.233

3 Parameterizing free convection as a neural differential equation234

3.1 Free convection235

Free convection occurs when a stably stratified fluid is cooled at its upper surface,236

or acted upon by some other destabilizing buoyancy flux, such as ejection of salt in ice237

formation. This loss of buoyancy at the surface leads to fluid parcels being made dense238

relative to their surroundings and so they sink, displacing buoyant fluid upwards. In this239

way a convectively-driven turbulent mixed layer is created that deepens with time (Marshall240

& Schott, 1999). Such a process occurs everywhere in the ocean as solar radiation and241

clouds cause the atmosphere to warm and cool the ocean surface over the diurnal and242

seasonal cycles: see the review of (Marshall & Plumb, 2007). The depth of the mixed243

layer and the strength of the convectively-driven mixing are important factors in setting244

the global climate: they determine, for example, how much heat, carbon, and other sol-245

uble gases are sequestered from the atmosphere into the ocean because exchanges be-246

tween the two fluids occur through this mixed layer. The surface mixed layer alone con-247

tains as much carbon as in the atmosphere. Moreover, the ocean absorbs the vast ma-248

jority (over 90%) of the excess heat in the climate system induced by greenhouse gases249

(Resplandy et al., 2019). The mixed layer is also crucial for ocean biochemistry as it sets250

the vertical scale over which many marine organisms yo-yo up and down and thus the251

amount of sunlight they have access to and hence their growth rate. For example nu-252

trient replenishment in the wintertime North Atlantic is associated with deep convec-253

tion and to springtime blooms when the mixed layer is shallow and light is plentiful (Williams254
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& Follows, 2011, §7.2). Thus accurately predicting the mixed layer depth and fluxes through255

it is critical for ensuring the fidelity of the models used to make climate projections.256

Figure 1. Snapshot from an LES simulation of small-scale oceanic boundary layer turbulence

forced by a surface cooling in a horizontally periodic domain using 2562 × 128 cells and simulated

using the Oceananigans.jl software package. (Left) Snapshots of the temperature field T (top left)

and turbulent vertical temperature flux field w′T ′, proportional to the heat flux (bottom left) at

t = 2 days. (Right) The horizontally-averaged temperature T (z) and turbulent vertical heat flux

w′T ′(z) at the same time snapshot. Note that the heat flux profile (bottom right) includes the

sub-grid scale eddy diffusivity κe∂zT (z) (see appendix A for details).

Wind stresses are also present at the ocean’s surface which drive turbulent momen-257

tum fluxes in addition to buoyancy fluxes, further complicating the physics of bound-258

ary layer. That said, free convection is an important physical process which must be cap-259

tured in models. Its accurate representation is non-trivial due to the entrainment of fluid260

through the base of the mixed layer where convective plumes penetrate down into the261
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stratified fluid below. This leads to the development of an entrainment layer below the262

mixed layer. This entrainment physics is very difficult to represent and parameterize —263

see Souza et al. (2020); Van Roekel et al. (2018). Instead of attempting to develop an-264

other theory-driven parameterization of these entrainment fluxes, we will deploy a neu-265

ral network within the framework of NDEs to capture them.266

Figure 1 shows a snapshot from a large eddy simulation of oceanic free convection.267

The mixed layer is the region of vertically-uniform (mixed) temperature spanning roughly268

the upper 50 m of the domain. Over this layer the upward heat flux decreases linearly269

from its surface value down toward zero at the base of the layer. The entrainment re-270

gion can readily be seen at the base of the mixed layer, at a depth of roughly 60 m, where271

the heat flux becomes negative.272

Explicitly simulating free convection requires solving the three-dimensional Boussi-273

nesq equations. However a look at figure 1 suggests that the turbulence is horizontally274

homogeneous and that we may be able to predict its vertical effects without simulating275

the extra horizontal dimensions. A one-dimensional model of free convection in a col-276

umn of water can be obtained by Reynolds averaging the advection-diffusion equation277

for temperature [see equation (16) in appendix A] to obtain the following one-dimensional278

PDE for the temperature279

∂tT = −∂zw′T ′. (4)

Here an overline indicates a horizontal average of a three-dimensional time-varying280

quantity281

φ = φ(z, t) =
1

LxLy

∫ Lx

0

∫ Ly

0

φ(x, y, z, t) dxdy (5)

and a prime indicates a departure from the horizontal mean φ′(x, y, z, t) = φ(x, y, z, t)−282

φ(z, t): Lx and Ly are the domain lengths along the x and y dimensions: w′T ′ is the tur-283

bulent vertical heat flux responsible for redistributing heat and is the focus of our at-284

tention.285

In the absence of phase changes, the fluid dynamics of the upper ocean are well de-286

scribed by the Boussinesq equations which can be solved numerically. Thus LES sim-287
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ulations can be run to provide reliable training data for w′T ′. In LES simulations the288

major part of the turbulent heat flux is achieved by resolved motions and an LES clo-289

sure is used to represent any sub-grid fluxes through, in the present study, an eddy dif-290

fusivity. Thus equation (4) can be written as291

∂tT = −∂zw′T ′ = −∂z(w′T ′|advective − κe∂zT ). (6)

Thus w′T ′ is explicitly represented via advection of temperature by the resolved292

flow w′T ′|advective (computed as the resolved vertical velocity anomaly w′ multiplied by293

the resolved temperature anomaly T ′) while sub-grid heat fluxes are accounted for via294

an eddy diffusivity κe(x, y, z) modeled using an LES closure (see appendix A for more295

details). The diffusive eddy heat fluxes are thus a small fraction of the advective heat296

fluxes. In this one-dimensional model of free convection we neglect background or molec-297

ular diffusion of temperature since the molecular thermal diffusivity coefficient of sea-298

water [κ ∼ O(10−7 m2 s−1)] is orders of magnitude smaller than the typical eddy dif-299

fusivity deployed in the forward model [κe ∼ O(10−2 m2 s−1) in the turbulent mixed300

layer].301

3.2 Base parameterization: Convective adjustment302

It is well known that, in the invicid limit, if dense fluid lies above a lighter fluid,303

gravitational instability will ensue of the kind seen in figure 1, leading to vertical mix-304

ing (Haine & Marshall, 1998). This vertical mixing occurs due to inherently three-dimensional305

small-scale free convection with length scales O(10−1 m) which cannot be resolved by306

global ocean models whose vertical grid spacing is O(1 m) and horizontal grid spacing307

is O(10 km) and thus the vertical mixing must be parameterized. If the mixing is not308

resolved numerically the model will produce statically unstable water columns with dense309

fluid atop lighter fluid.310

As a simple, physically-plausible base parameterization we choose convective ad-311

justment. This will capture most of the resolved flux, but not all of it. Convective ad-312

justment is a simple parameterization that represents this mixing via a large vertical dif-313

fusivity if vertical buoyancy gradients imply static instability (Klinger et al., 1996). It314

can readily capture the vertical structure of the boundary layer except for the entrain-315

ment region at its base since it makes no attempt to account for entrainment processes.316
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If a neural network can be trained to accurately predict the turbulent fluxes associated317

with entrainment then augmenting convective adjustment with such a neural network318

will likely increase the skill of the parameterization.319

In this paper convective adjustment is implemented as a diffusive process in which320

a large diffusivity KCA is turned on in regions of the water column that are statically321

unstable:322

w′T ′(z, t) ≈ −κCA(z, t)∂zT (z, t) where κCA(z, t) =


KCA, if ∂zT (z, t) < 0

0, otherwise

. (7)

The one free parameter KCA must be chosen which is done here by calibrating con-323

vective adjustment against the same training simulations as the NDE. We find that the324

optimal convective adjustment diffusivity is KCA ≈ 0.2 m2 s−1 (see appendix E for de-325

tails). This value is adopted and kept at the same constant value across all our exper-326

iments.327

3.3 The Neural Differential Equation for free convection328

As convective adjustment does not account for entrainment that occurs at the base329

of the mixed layer, we will now augment it with a neural network which will be trained330

to address the entrainment fluxes.331

We write down the heat flux from the one-dimensional free convection model in-332

cluding convective adjustment thus:333

w′T ′ = w′T ′|CA + w′T ′|missing = −κCA∂zT + w′T ′|missing. (8)

where w′T ′|CA is the turbulent vertical heat flux predicted by convective adjust-334

ment and w′T ′|missing is the missing portion.335

Comparing the form of w′T ′ above to that obtained by horizontally averaging the336

equations of the LES model,337

w′T ′ = w′T ′|advective − κe∂zT (9)
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we identify the missing heat flux as338

w′T ′|missing = w′T ′|advective − κe∂zT + κCA∂zT . (10)

The quantity on the left-hand side, w′T ′|missing, must be learnt, while the quan-339

tities on the right are all known, being provided by the LES data (for w′T ′|advective−340

κe∂zT ) and the base parameterization (κCA∂zT ). We use a neural network to represent341

the missing flux,342

w′T ′|missing(z) = NN
[
T (z)

]
, (11)

by training it to learn the relationship between equation (10) and the temperature343

profile T .344

Noting that w′T ′ = w′T ′|param+w′T ′|missing and substituting the above into the345

PDE, equation (4), we obtain our NDE — a differential equation with a neural network346

representing missing physics:347

∂tT = −∂zw′T ′ = −∂z
[
NN

(
T
)
− κCA∂zT

]
(12)

The input to the NN is just the current state of the temperature profile T . So the348

job of the NN is to predict w′T ′|missing from the temperature profile T . To train the NDE349

we will non-dimensionalize equation (12) (see appendix D for a derivation of the non-350

dimensional NDE) used in our codes. The NDE is implemented using DifferentialEqua-351

tions.jl and Julia’s scientific machine learning (SciML) software stack (Rackauckas & Nie,352

2017).353

3.4 Architecture of the Neural Network354

The NN predicts the missing (residual) fluxes from the prognostic variables con-355

stituting the state of the model. In the present application, as shown schematically in356

figure 2, we found it sufficient to supply just the temperature profile T (z) as input with357

w′T ′|missing(z) as the output.358
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⋮ ⋮

Figure 2. Schematic representation of the architecture of the neural network. Temperature

values are colored in blue while predicted missing (equivalently, residual) fluxes are colored yel-

low. A temperature profile consisting of N values is fed into the neural network which predicts

N − 1 values for the missing heat flux in the interior of the domain. The T (z) and w′T ′|missing(z)

profiles shown here are one example from the training data. See main text for more details.

The input of the neural network is a temperature profile vector T (z) consisting of359

N = 32 floating-point values as shown on the leftmost plot of figure 2 and denoted as360

T 1, T 2, · · · , TN . The N blue points show the temperature values which are the N in-361

puts to the neural network, shown as bigger blue circles connected to the values. The362

neural network outputs N−1 values predicting the missing heat flux w′T ′|missing(z) in363

the interior of the domain denoted as w′T ′
m

2 , w
′T ′

m

3 , · · · , w′T ′
m

N . Yellow dots are fluxes364

predicted by the neural network while red squares are boundary fluxes that are prescribed365

and thus do not need to be predicted by the neural network. Knowledge of the bound-366

ary fluxes, together with the form of our NDE, clearly guarantees that conservation is367

obeyed. In all the calculations presented here we set N = 32 so that the resolution of368

the NDE is similar to that of a typical vertical mixing parameterization embedded in an369

ocean model.370

We use simple feed-forward neural networks in which the input propagates through371

a series of layers with each layer taking an input then transforming it into an output be-372

fore passing the output onto the next layer. The output may be fed through an activa-373

tion function before being passed on. A layer may perform a linear transformation car-374

ried out by an activation function σ: x → σ(Wx + b). The layer can also perform a375
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convolution or any other transformation on its input. The parameters of the neural net-376

work comprise entries of the weight matrix W and bias vector b for each layer. They are377

optimized using specialized optimization algorithms, many of which use various forms378

of gradient descent to minimize a loss function. In this way we ensure that the neural379

network learns some relationship between the inputs and outputs. For an introduction380

to neural networks and how to train them, see Mehta et al. (2019).381

We choose to begin exploration by adopting a simple architecture for the neural382

network, denoted here by NN, a series of fully-connected dense layers in which each layer383

performs the transformation x→ relu(Wx+b) and where the activation function is a384

rectified linear unit (relu) defined as relu(x) = max(0, x). In §7 we will consider dif-385

ferent NN architectures including wider and deeper networks as well as convolutional lay-386

ers. The architectures used are catalogued in appendix G. The Julia package Flux.jl (Innes,387

2018) is used to set up the neural networks and train them.388

The neural network takes N input values and outputs N − 1 values. This is be-389

cause the one-dimensional model of free convection is implemented using a finite volume390

method on a staggered grid — sometimes called the Arakawa C-grid after Arakawa and391

Lamb (1977) — so there are N cell centers where the temperature is located but N+392

1 cell interfaces where the turbulent heat fluxes are located. The top-most and bottom-393

most cell interfaces correspond to the upper and lower boundaries where heat fluxes are394

prescribed and therefore known. This is why the neural network only predicts the re-395

maining fluxes at the N − 1 cell interfaces in the interior of the domain.396

4 Generation of training data using large eddy simulations397

4.1 Training data from high resolution simulations of free convection398

Ideally one would use observations of temperature profiles and turbulent heat fluxes399

from the real ocean to provide training data. While ocean observations exist in many400

regions of the ocean especially thanks to Argo floats (Roemmich et al., 2009), they are401

not available at sufficiently high spatial and temporal resolutions in the mixed layer, and402

are subject to measurement error. Furthermore, observations of the contemporaneous403

surface fluxes are not usually available.404

We could employ a very high-resolution global ocean simulation from which train-405

ing data could be extracted covering a wide range of physical scenarios. However, the406
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resolution required to resolve free convection is O(1 m) (Souza et al., 2020) which is far407

beyond current computational capabilities in the context of a global simulation (Fox-Kemper408

et al., 2019). Instead, we deploy the very high resolution LES model shown in figure 1.409

By varying the surface buoyancy flux and the initial stratification (by setting an initial410

temperature profile) the box simulations can span a large range of physical scenarios and411

provide a rich variety of training data in a controlled and well-defined setting.412

4.2 Simulation setup413

Simulations of free convection are run by numerically solving the Boussinesq equa-414

tions with an LES closure to represent sub-grid fluxes. The LES is initialized with a strat-415

ified fluid at rest with an idealized vertical structure consisting of a weakly-stratified sur-416

face layer and a weakly-stratified abyssal/interior layer separated by a strongly-stratified417

thermocline. A constant surface cooling is applied via a surface buoyancy flux leading418

to gravitational instability and the formation of a deepening mixed layer. The LES sim-419

ulations are performed using the Oceananigans.jl software package. The numerical meth-420

ods employed are described in appendix A and the simulation setup is described in more421

detail in appendix B. Horizontally-averaged output taken at regular time intervals from422

these simulations is used as training data. A snapshot from a typical solution is shown423

in figure 1.424

The LES simulations are run using 2562×128 elements with a uniform size of 1 m.425

However, the parameterization is run in one dimension at a coarser resolution chosen,426

typical of that used in general circulation ocean models (GCM). This is because the pa-427

rameterization is intended to eventually embed into a global GCM which typically em-428

ploy coarser grids. Ocean GCMs often use a vertically stretched grid which is coarser429

deeper in the ocean, but reaches O(10 m) near the surface. We use a constant vertical430

resolution of ∆z = 8 m yielding Nz = 32 vertical levels. Thus the horizontally-averaged431

simulation output is coarse-grained from a vertical grid of 256 elements to one of 32 el-432

ements to provide training data.433

The training data consists of a time series of horizontally-averaged temperature T (z, t)434

and horizontally-averaged turbulent vertical heat flux w′T ′(z, t) from each simulation.435

They are discretized in space and time denoted, for example, by T k,n = T (zk, tn) where436

zk is the kth vertical coordinate (k ∈ {1, · · · , Nz}) and tn is the nth time snapshot (n ∈437
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Figure 3. Snapshots of temperature and heat flux profiles during the evolution of a convec-

tively driven boundary layer driven by cooling from the surface. Solid lines show the true (LES)

solution at different times and the points show the location of coarse-grained temperature val-

ues used by the neural network. The dashed lines show the solution produced by the convective

adjustment parameterization. The heat flux profile (bottom right) includes the diffusive contri-

bution κe∂zT (z) (see appendix A for more information). The profiles are taken from simulation

5 of table 1 in appendix C. Note that only half the vertical domain is shown but the full solution

extends down to 256 m.

{1, · · · , Nt}). Nz is the number of vertical grid elements and Nt is the number of time438

snapshots. Figure 3 shows a snapshot of the training data from one of the training sim-439

ulations. The predictions from a convective adjustment model are also plotted using dashed440
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lines. The difference between the LES heat flux and the heat flux from convective ad-441

justment is precisely the missing heat flux that the neural network embedded in the NDE442

will learn to predict. In this way the NDE can close the gap between the simple convec-443

tive adjustment parameterization scheme and the full LES simulation. With the neu-444

ral network providing the missing entrainment heat fluxes, we expect the temperature445

profiles to evolve with skill.446

4.3 Training and validation cases447

Our NDE is to be designed to perform well across a wide range of surface buoy-448

ancy fluxes and stratifications. We must necessarily train our NDE on a limited set of449

simulations, however, but can evaluate its ability to generalize by assessing how it per-450

forms when asked to make predictions for heat fluxes and stratifications it has not been451

trained on. We can test whether the NDE can interpolate — that is make a correct pre-452

diction when the physical scenario is distinct but not more extreme than scenarios it has453

been trained on. We can also test whether the NDE can extrapolate — that is perform454

well in scenarios outside of its training space. Interpolation and extrapolation is tested455

by varying both the surface buoyancy flux, Qb, and the stratification, N2. In the present456

study we used 9 training simulations and 12 testing/validation simulations split into 4457

sets of 3 simulations: Qb interpolation, Qb extrapolation, N2 interpolation, and N2 ex-458

trapolation, as set in figure 4.459

Figure 4 shows the position of the 21 simulations in parameter space and whether460

they were used for training or validation. The simulation parameters used are tabulated461

in table 1 in appendix C. The NDE was trained on 3 different values of Qb (blue points)462

and 3 different initial N2 profiles, leading to the 9 training simulations (colored blue).463

To evaluate interpolation capabilities, values of Qb in between the three training values464

were chosen (simulations 9–12, colored green): to evaluate extrapolation capabilities, val-465

ues smaller and larger than the training values were chosen (simulations 13–15, colored466

purple). Initial N2 profiles were taken from the training simulations so that only Qb was467

varied.468

To vary different initial N2 profiles, the thicknesses and stratifications of the sur-469

face and thermocline layers were changed (see appendices B and C for details) and the470

range of initial N2 are visualized as kernel density estimates in figure 4 showing the dis-471
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Figure 4. Position in parameter space of simulations used for training and validation. Each

simulation differs in the assumed surface heat/buoyancy flux Qb and initial stratification N2 set

by the initial vertical temperature distribution. Simulations 1–9 were used for training (colored

in blue) while simulations 10–21 were used to test interpolation and extrapolation capabilities.

(Left) The surface buoyancy flux of each simulation with dashed lines indicating the three val-

ues which provided training data. (Right) Kernel density estimates of the initial stratification

distribution of each simulation.

tribution of N2 present in the initial profile. To evaluate interpolation capabilities (sim-472

ulations 16–18, colored orange) the simulation parameters were varied to create an ini-473

tial N2 profile that is different from that of the training data but which exhibits strat-474

ifications between those of the training simulations. This is evident in the plotted dis-475

tributions (orange kernel density estimates) as their peaks either overlap with or are in476

between the peaks of the distributions for the training simulations. To evaluate extrap-477

olation capabilities (simulations 19–21, colored red) the simulation parameters were var-478

ied to create two very weakly stratified simulations (19 and 20) and one very strongly479
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stratified simulation (21). Values of Qb were chosen from those used in training so that480

only the initial N2 profile was varied.481

5 Training the Neural Differential Equation482

In section 2 we discussed the key idea behind NDEs in which unknown terms are483

represented by neural networks and trained to learn the unknowns. This can be done484

in two different ways. The neural network can be trained independently of the NDE us-485

ing profiles of the missing fluxes and then brought into the NDE. This first method can486

be called differential control as the neural network is trained to predict fluxes at instances487

in time and so it learns derivatives or rates at instances in time. Alternatively, the NDE488

can be trained directly on the entire temperature time series with the neural network489

embedded within it. This second approach can be called integral control as the neural490

network learns to predict the temperature integrated over time. Integral control is more491

computationally intensive and requires sophisticated automatic differentiation software492

since it involves back-propagation through the differential equation solver. In this sec-493

tion we will use both training methods and compare them.494

Before going on it should be noted that another descriptor for our two methods could495

be used: differential control is offline training and integral control is online training. The496

distinction being that online training is performed while the parameterization is being497

run. Sometimes we switch between the two.498

5.1 Optimization of convective adjustment499

Before training the NDE, it is prudent to optimize our base convective adjustment500

parameterization. This ensures that convective adjustment performs optimally, reduc-501

ing the burden on the neural network. This is done by calibrating convective adjustment502

against the set of training simulations described in the previous section. In the convec-503

tive adjustment scheme, equation (7), there is a single free parameter, KCA. By scan-504

ning through plausible values of KCA across our suite of simulations, we find the opti-505

mal value to be KCA ≈ 0.2 m2 s−1 (see appendix E for details): KCA was subsequently506

kept at a constant value of 0.2 m2 s−1 in all calculations.507
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5.2 Method 1: differential control — training offline on the fluxes508

Since the neural network maps T (z) profiles to w′T ′|missing(z) profiles (see figure509

2), we can simply train the neural network to learn this relationship from appropriate510

training data. Training to replicate the fluxes can be thought of as a form of differen-511

tial control as it is learning the instantaneous T → w′T ′|missing(z) relationship. Once512

the neural network is trained, it can be brought into the NDE which can be immediately513

used to make predictions.514

We seek to minimize the difference between the w′T ′|missing(z) profile predicted by515

the neural network and the profile diagnosed from LES data. Thus we aim to minimize516

a loss function of the form517

L1(θ) =

Ns∑
s=1

L1,s(θ) where L1,s(θ) =
1

Lz

∫ 0

−Lz

∣∣w′T ′s(z;θ)|NNmissing − w′T ′s(z)|LESmissing

∣∣2 dz.

(13)

Here L1 is the full loss function and L1,s is the loss function over simulation s, Ns =518

9 is the number of training simulations and θ are the parameters being optimized to min-519

imize the loss function, i.e. the neural network weights.520

The neural network is trained over 5000 epochs. Each epoch is defined as one train-521

ing iteration involving a full pass through the training data. The training is performed522

using the ADaptive Moment Estimation (ADAM) algorithm which is based on stochas-523

tic gradient descent and utilizes running averages of the gradients and its second mo-524

ments (Kingma & Ba, 2014). A learning rate (or step size) of η = 10−3 is used. The525

top left panel of figure 5 shows the value of the loss function (13) for the training and526

validation simulations as the neural network is trained (see appendix G for training times).527

We see that during training the loss decreases for most of the simulation sets. The loss528

for the N2 interpolation and extrapolation sets sharply rises then decreases before slowly529

increasing, possibly indicating some amount of overfitting to the training data during530

earlier epochs. However, the bottom left panel of figure 5 shows that when embedded531

into the NDE and evaluated using a second loss function (introduced in the next sub-532

section), training the neural network on fluxes does not actually lead to improved pre-533

dictions for the temperature profile.534
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5.3 Method 2: integral control — training online on the full fluxes535

While differential control can be expected to lead to a trained neural network ca-536

pable of predicting missing fluxes from the temperature profile alone, small discrepan-537

cies in the predicted fluxes may accumulate over time resulting in temperature drift. To538

remedy this we also try to minimize a loss function that includes the term of principal539

interest, the temperature profile itself.540

Training to reproduce the time series can be thought of as a form of integral con-541

trol as it is learning to predict behavior over the time history of the simulation, and not542

just at singular instants in time, and backpropagating through the differential equation543

solver as the NDE is simulated.544

The loss function in this case takes the form545

L2(θ) =

Ns∑
s=1

L2,s(θ) where L2,s(θ) =
1

τLz

∫ τ

0

∫ 0

−Lz

∣∣TNDE(z, t;θ)− TLES(z, t)
∣∣2 dz dt

(14)

where τ is the length of simulation time (or window) over which T (z, t) is included546

in the loss function in case we do not want to train on the full time series.547

For training we again find that ADAM with a learning rate of η = 10−3 leads to548

good results. One might want to decrease η as the loss decreases, taking smaller steps549

as the global minimum is approached. However, we found that incrementally or expo-550

nentially decreasing η as a function of the epoch number did not lead to faster training551

or lower loss values.552

Neural network weights are often initialized using schemes designed to speed up553

training and avoid issues of vanishing gradients during training. The neural network ar-554

chitectures used here are initialized in Flux.jl using Glorot uniform initialization (Glorot555

& Bengio, 2010). This works well with differential control training but can compromise556

integral control training.557

Because of our formulation, the neural network is capturing a residual from a base558

parameterization. Therefore the starting hypothesis is that the physics parameteriza-559

tion is correct, which corresponds to the neural network outputting zero for everything.560

This is done by setting the default waits sufficiently close to zero. The initial weights are561
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set using Glorot uniform initialization but then multiplied by 10−5. This has the effect562

of making the predicted missing flux negligible at epoch zero but the training process563

leads to the NDE slowly improving upon the base parameterization as it is trained. An564

alternative training method, but one we found less simple, is to not train on the full time565

series from epoch zero but rather to train incrementally on longer and longer time se-566

ries. That is by increasing τ in equation (14). For example, τ can be set to 3 hours for567

25 epochs, then 6 hours for the next 25 epochs, then 12 hours and so on. This has the568

beneficial effect of slowly stabilizing the NDE as it is trained. During the integral con-569

trol training process stabilized explicit time stepping methods of the ROCK family (Abdulle,570

2002) are utilized to efficiently handle the stiffness introduced in the PDE discretization571

to improve the performance and stability of the numerical solution. We find that ROCK4572

provides enough stability for all our training cases.573

Figure 5 shows the value of both loss functions (13) and (14) for the different sim-574

ulation sets. They show high-frequency noise due to the ADAM algorithm constantly575

attempting to ensure that the optimization does not remain in local minima. From the576

bottom right panel we see that augmenting convective adjustment with the trained neu-577

ral network improves the loss by almost 2 orders of magnitude on the training set. The578

loss on the validation simulations where Qb was varied improves monotonically, perhaps579

indicating that overfitting is not a concern. In validation simulations where N2 was var-580

ied the loss fluctuates somewhat more, potentially indicating that overfitting is occur-581

ing. Since both loss functions increase in the N2 extrapolation case, overfitting is indeed582

likely occurring here.583

Comparing the two panels on the right, we see that both loss functions drop very584

quickly in the first 50 epochs suggesting that training on the time series leads to learn-585

ing of both the time series and the fluxes. However, as the NDE is trained more its abil-586

ity to predict fluxes worsens over time. One possible explanation for this surprising re-587

sult is that the neural network is being trained on instantaneous fluxes (snapshots in time)588

which may be noisy. Much noise is removed through horizontal averaging, however some589

remains. A potential remedy is to train the neural network on time-averaged horizontally-590

averaged fluxes.591

Inspection of the two panels on the left enables us to evaluate the fidelity of the592

NDE trained using differential control. We see that while it performs well in predicting593
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Figure 5. Loss history of our two training methods evaluated using L1 [equation (13)] and

L2 [equation (14)]. The left column shows both loss functions when training on the fluxes given

by L1. The right column shows both loss functions when training on the time series given by L2.

The top row shows both methods assessed using loss function L1 while the bottom row shows

both methods assessed using L2. Different colors are used to indicate the training set and each

testing set of simulations. The solid lines show the mean loss across all simulations in the same

set.

the fluxes (top left), the prediction of the temperature time series does not improve (bot-594

tom left). Indeed, in this case the NDE does worse at predicting the time series. This595

may again be associated with noise in the instantaneous fluxes and could perhaps be ame-596

liorated somewhat by using time-averaged fluxes.597

6 Assessing the fidelity of the trained Neural Differential Equation598

6.1 Differential versus integral control599

In section 5 we described two methods of training the NDE, first via differential600

control and second via integral control. We now address the question of whether train-601

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

ing an NDE on the full time series (integral control) provides any benefits over training602

on instantaneous flux snapshots (differential control). For the comparisons in this sec-603

tion the NDE is solved as part of a 1D column model simulated using Oceananigans.jl.604

While the NDE was trained using the explicit ROCK4 time-stepper, it performs just as605

well embedded in Oceananigans.jl which utilizes a split-explicit time-stepper with a second-606

order Adams-Bashforth explicit time-stepper and implicit Backward Euler time-stepper607

for convective adjustment. This demonstrates the independence of the NDE on the time608

stepper used operationally or during training since a neural network is only used to learn609

a source term for a PDE.610

Figure 6 shows how our loss metric compares between our two methods over time.611

Using differential control the loss increases as the simulation progresses in time. This may612

be because, even though the neural network is trained to reproduce the fluxes at snap-613

shots in time, errors are compounded when time-stepping forward leading to divergence.614

With integral control training, instead, the neural network attempts to reproduce the615

time series in its entirety. As a result the error does not generally grow but remains bounded.616

The exception is the slight increase in error near the end of the simulation period at t =617

8 days. The fact that the NDE solution remains congruent with the LES solution, and618

that by t = 8 days the loss when trained on the full time history is smaller by more than619

an order-of-magnitude in both training and validation sets, suggests that the use of in-620

tegral control is superior to the differential control approach. This demonstrates that while621

loss functions can be constructed to train embedded neural networks independently of622

the simulation process, the approach which requires differentiating the simulation greatly623

improves the stability of the learned result.624

6.2 Comparison with other parameterizations625

The main goal of developing data-driven parameterizations with NDEs is to im-626

prove upon existing parameterizations. Thus we now explore the skill of the trained NDE627

with existing parameterizations. In particular we compare the NDE with the base pa-628

rameterization — convective adjustment — and a much more sophisticated scheme known629

as the K-Profile Parameterization (or KPP for short) described by Large et al. (1994).630

This is a popular vertical mixing model used by many ocean GCMs. Almost by construc-631

tion, our NDE can only improve upon convective adjustment so we will focus on the com-632

parison with KPP. The latter scheme performs well in the representation of free convec-633
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Figure 6. Time series of the loss function L2 [equation (14)] over the period of mixed layer

evolution. In blue is the loss of the NDE trained on the time series (integral control) while in

orange is the loss of the NDE trained on the instantaneous fluxes (differential control). The solid

lines show the mean loss across all simulations in the same set while the shaded area shows the

minimum and maximum loss across all simulations.

tion, except that it cannot easily be calibrated to work equally well for all background634

stratifications (Souza et al., 2020). For a challenging comparison, therefore, we have also635

tuned KPP’s parameters to perform well against our training simulations (see appendix636

F for details).637

Figure 7 shows how each parameterization performs on each of the five simulation638

sets. As expected, we see that in each set our NDE outperforms convective adjustment639

since we can only improve upon the base parameterization. As the simulation proceeds,640

the loss for each parameterization increases indicating that they diverge from the LES641

solution over time. However, our NDE generally outperforms both convective adjustment642

and KPP. Convective adjustment shows skill initially but deteriorates over time. For train-643

ing and interpolation cases our NDE outperforms KPP while for extrapolation cases the644
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NDE and KPP perform similarly. The NDE is capable of some extrapolation when tested645

against buoyancy fluxes Qb it has not seen before, but shows less skill when the strat-646

ification N2 is outside the range of the training data. We will further investigate the abil-647

ity to extrapolate using our NDE in section 7 when we modify the architecture of the648

neural network.649
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Figure 7. The time series loss L2 [equation (14)] of three different parameterizations as a

function of simulation time, for different sets of training and testing simulations. The solid lines

show the mean loss across all simulations in the same set, while the shaded area shows the mini-

mum and maximum loss across all simulations.

Figure 8 updates figure 3 to include the NDE solution under integral control. The650

NDE solution matches the LES solution much more closely than the other parameter-651

izations for both temperature T (z) and heat flux w′T ′(z) profiles. Of particular inter-652

est is how closely the NDE heat flux profiles matches up with the profile from the LES653

simulation. The neural network was not trained on the heat flux but rather on the tem-654

perature time series. Nevertheless, it predict a physically meaningful and accurate heat655

flux.656
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Figure 8. Comparison of three different parameterizations against the LES (truth) solution

from simulation 11 (see table 1 in appendix C), one of our Qb interpolation simulations. (Left)

The heat flux profile w′T ′(z) predicted by the LES and by each parameterization. (Middle) The

predicted temperature profiles T (z). (Right) The loss between the LES (true) solution and the

predicted temperature profiles for each parameterization. Note that only half the vertical domain

is shown to emphasize the structure of the mixed layer.

7 Hyperparameter optimization657

Thus far we have only trained the NDE using a dense, fully-connected neural net-658

work. We will now change the architecture of the neural network in an attempt at hy-659

perparameter optimization, i.e., optimizing the architecture of the neural network itself660

to improve the skill of the NDE.661

There are two main reasons to optimize the architecture of the neural network: im-662

prove the fidelity of the NDE itself, and to carry out hypothesis testing using different663

architectures. Here we experiment with four additional architectures. For a wider net-664

work we increase the size of the hidden layers from 4Nz to 8Nz; for a deeper network we665
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add an extra hidden layer of size 4Nz. We also use two neural networks with convolu-666

tional first layers and filter sizes of 2 and 4. The use of the dense and “convolutional”667

network architectures can be thought of making the assumption that the parameteriza-668

tion is fully nonlocal in the dense case and local in the convolutional case with the fil-669

ter size determining the degree of locality. Appendix G details the architectures used in-670

cluding the number of free parameters (or weights) in each one.671
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Figure 9. Time series of loss L2 [equation (14)] for various neural network architectures for

each training and testing simulation, as a function of the training epoch. Each colored curve

corresponds to one of the architectures used and each panel shows how the different architectures

performed on each set of simulations.

Figure 9 shows how the different architectures performed on the different sets of672

simulations. The architectures all perform similarly on the training set. Considering the673

interpolation and extrapolation capabilities we see that the convolutional (4) architec-674

ture consistently outperform the others. In the N2 interpolation and extrapolation cases675

we see that by epoch 2000 all the architectures are likely overfitting the training data676

except for convolutional (4). This is perhaps not surprising since free convection does677
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not exhibit non-locality (Souza et al., 2020) suggesting that only local information is re-678

quired and that convolutional networks should outperform fully-connected networks. The679

convolutional (4) architecture also exhibits less high frequency noise in the loss function,680

perhaps indicating that its gradients are less noisy and/or better behaved leading to a681

less challanging training process. The convolutional (4) architecture also has the fewest682

free parameters, suggesting that fully-connected networks perhaps have too many, lead-683

ing to overfitting of the training date. Perhaps designing the architecture around phys-684

ical assumptions is more important than designing larger or deeper networks.685

An encouraging result is that our NDE approach seems robust to the architecture686

of the neural network employed in that all five architectures were trainable. This sug-687

gesting that the NDE approach could perhaps be used to perform hypothesis testing on688

the ideal structure of the parameterization. More investigation is necessary to determine689

whether a single architecture can perform best in all cases. A more systematic and pow-690

erful approach to hyperparameter optimization might prove useful here (Snoek et al.,691

2012) and specialized inference algorithms for large datasets and networks exist (Klein692

et al., 2017).693

8 Discussion and conclusions694

Here we have illustrated how NDEs might provide an attractive medium for de-695

veloping data-driven parameterizations for climate models. NDEs can be constructed696

to augment an existing parameterization scheme whilst remaining faithful to conserva-697

tion laws. They can then be, for example, trained on high-resolution LES data within698

a differential equation time-stepper. The resulting solutions are stable and faithfully rep-699

resent turbulent processes which are challenging to capture using conventional schemes.700

For example, we have shown that a simple parameterization of convection — that of con-701

vective adjustment — can be improved upon by training the NDE to capture the entrain-702

ment fluxes at the base of the well-mixed layer, fluxes that convective adjustment can-703

not represent. The augmented parameterization outperforms existing commonly used704

parameterizations such as KPP. Training even stiff NDEs (e.g. when convective adjust-705

ment is employed) is made possible by the Julia scientific machine learning (SciML) soft-706

ware stack.707
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We can usefully describe the method we are advocating as a ’residual’ approach,708

in which the NN is used to improve upon an existing parameterization through the rep-709

resentation of (residual) fluxes which are not captured by the base parameterization. All710

of this is elegantly enabled through the use of NDEs. We see no reason why a similar711

residual approach cannot be used to improve upon many other existing parameteriza-712

tions exploiting the attractive form of NDEs.713

We have chosen to focus on convectively-driven turbulence of the ocean boundary714

layer since it provides an idealised, proof-of-context setting for our exploration of NDEs.715

A number of implementation choices were made for simplicity and could be improved.716

The parameterization was trained and tested using a single vertical resolution. Exist-717

ing parameterizations such as KPP can be sensitive to model resolution (Souza et al.,718

2020) and development of a resolution-independent parameterization would be desirable.719

One approach might be to decompose the temperature profile into a Fourier or Cheby-720

shev series. The NN could then be trained on polynomial coefficients (Li et al., 2020).721

Profiles sampled at different resolutions might then lead to an NDE that effectively be-722

comes resolution-independent. Going even further, an autoencoder neural network might723

be used to learn the best representation of the data which could, in principle, be very724

different from a polynomial expansion, although perhaps less interpretable.725

The learning methods and tooling employed here are rather standard in the ML726

community and we have made no attempt to optimize the NDE’s performance for either727

prediction time or training time. Neural network pruning can be used to eliminate un-728

necessary free parameters in the architecture leading to faster predictions with minimal729

impact on accuracy. A more thorough investigation into hyper-parameter optimization730

could reveal smaller and faster architectures that perform just as well or even better than,731

for example, those explored in section 7. Moreover, reducing the amount of training data732

could lead to similar accuracy yet with shorter training times. In the present study the733

networks employed were too small to benefit from the speedup provided by GPUs. That734

said, larger networks might benefit from GPU resources and offer large speedups com-735

pared to CPUs. Efficient GPU-enabled NDEs might then be readily embedded into fast736

GPU-enabled ocean models such as Oceananigans (Ramadhan et al., 2020) and Veros737

(Häfner et al., 2018).738
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Data-driven parameterizations, residual or not, can also be used to perform hypoth-739

esis testing for closures. For example, to test whether a local or nonlocal closure is needed740

to model some complex physics, two neural networks may be trained: one using dense,741

fully-connected layers to furnish a fully nonlocal closure and another using convolutional742

layers for a local closure. Comparing the accuracy of the two could indicate whether a743

nonlocal closure is required, or provide insight into which physical scenarios exhibit non-744

local physics. There are a vast number of possibilities that could be explored: recurrent745

neural networks can be used to test whether including time history improves the closure,746

long-term short-memory (LSTM) architectures and transformers (Vaswani et al., 2017)747

to test whether including lagged information improves the closure, and so on. Custom748

architectures with new physical properties can also readily be constructed, for example,749

to create a data-driven parameterization that is only nonlocal. Physical insights from750

such hypothesis testing with data-driven parameterizations may be valuable in and of751

themselves, and can also guide the development of improved theory-driven parameter-752

izations.753

Future work should explore whether the NDE framework can be applied to more754

complex turbulent processes in both the ocean and atmosphere. Having tackled free con-755

vection, it would be natural to consider the more realistic case of a water column forced756

by both buoyancy and momentum surface fluxes. The parameterization of mesoscale eddy757

transport in the ocean is also a crucial and inadequately-represented turbulent process758

for which NDEs might improve upon existing parameterizations. We considered phys-759

ical scenarios with constant surface fluxes but future work should also investigate whether760

NDEs are capable of performing well in the presence of spatially- and time-varying sur-761

face fluxes. Since surface fluxes are prescribed here as boundary conditions, rather than762

being fed into the neural network, the NDE approach could generalize rather well to less763

idealised forcing scenarios.764

A Numerical methods and Oceananigans.jl765

Oceananigans.jl (Ramadhan et al., 2020) is open source software for ocean stud-766

ies written in the Julia programming language (Bezanson et al., 2017). It runs on both767

CPUs or GPUs using Julia’s native GPU compiler (Besard et al., 2019).768
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For the large eddy simulations performed in this paper, Oceananigans.jl is config-769

ured to solve the spatially filtered, incompressible Boussinesq equations with a temper-770

ature tracer. Letting u = (u, v, w) be the three-dimensional, spatially filtered velocity771

field, T be the temperature, p be the kinematic pressure, f be the Coriolis parameter,772

and τ and q be the stress tensor and temperature flux due to sub-filter turbulent dif-773

fusion, the equations of motion are774

∂tu+ (u · ∇)u+ f × u+∇p = b−∇ · τ (15)

∂tT + u · ∇T = −∇ · q (16)

∇ · u = 0 (17)

The buoyancy b = bẑ appearing in equation (15) is related to temperature by a775

linear equation of state,776

b = αg(T0 − T ) (18)

where T0 = 20 °C is a reference temperature, α = 2× 10−4 K−1 is the thermal777

expansion coefficient, and g = 9.81 m s−2 is gravitational acceleration at the Earth’s778

surface.779

The sub-filter stress and momentum fluxes are modeled with downgradient closures,780

such that781

τij = −2νeΣij and q = −κe∇T (19)

where Σij = (∂iuj+∂jui)/2 is the strain rate tensor and νe and κe are the eddy782

viscosity and eddy diffusivity of temperature. The eddy viscosity νe and eddy diffusiv-783

ity κe in equation (19) are modeled with the anisotropic minimum dissipation (AMD)784

formalism introduced by Rozema et al. (2015) and Abkar et al. (2016), refined by Verstappen785

(2018), and validated and described in detail for ocean-relevant scenarios by Vreugdenhil786
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and Taylor (2018). AMD is accurate on anisotropic grids (Vreugdenhil & Taylor, 2018)787

and is relatively insensitive to resolution (Abkar et al., 2016).788

To solve equations (15)–(17) Oceananigans.jl uses a staggered C-grid finite volume789

spatial discretization (Arakawa & Lamb, 1977) with an upwind-biased 5th-order weighted790

essentially non-oscillatory (WENO) advection scheme for momentum and tracers (Shu,791

2009). Diffusion terms are computed using centered 2nd-order differences. A pressure pro-792

jection method is used to ensure the incompressibility of u at every time step (Brown793

et al., 2001). A fast Fourier-transform-based eigenfunction expansion of the discrete second-794

order Poisson operator is used to solve the discrete pressure Poisson equation for the pres-795

sure on a regular grid (Schumann & Sweet, 1988). An explicit 3rd-order Runge-Kutta796

method is used to advance the solution in time (Le & Moin, 1991).797

B Simulation setup and generation of LES training data798

To generate training data we run a suite of high-resolution LES simulations using799

Oceananigans.jl. The simulations capture various combinations of surface buoyancy flux800

and stratification profiles keeping everything else constant. Parameter values are cho-801

sen so that the mixed layer depth does not extend beyond approximately half of the do-802

main depth by the end of the simulation, thus minimizing significant finite size effects.803

In all simulations, the model domain is 512 m×512 m×256 m with 256 grid points804

in the horizontal and 128 grid points in the vertical, giving a 2 m isotropic grid spacing.805

A Coriolis parameter of f = 10−4 s−1 is used. The fluid is initially at rest (u = 0) and806

the initial condition on T is horizontally homogeneous and has three layers. At the top807

is a surface layer of thickness ∆zs with constant stratification N2
s . At the bottom is a808

deep layer with constant stratification N2
d . In the middle is a transition layer or ther-809

mocline layer of thickness ∆zt with nonlinear stratification determined by fitting a cu-810

bic polynomial for T between the surface and deep layers preserving continuity and dif-811

ferentiability. The deep layer then has a thickness of Lz−∆zs−∆zt where Lz = 256 m812

is the domain depth. Random noise of the form εez/δ where ε ∼ Uniform(0, 1) and δ =813

8 m is a noise decay length scale is added to the initial T to stimulate numerical convec-814

tion near the surface. An example of this initial condition can be seen in figure 3.815

The surface buoyancy flux Qb is implemented as a surface temperature flux bound-816

ary condition Qθ = Qb/(αg). A gradient boundary condition on T is imposed at the817
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bottom of the domain to maintain the bottom stratification. A sponge layer of the form818

∂tu = −τ−1e−(z+Lz)/`u, where τ = 15 minutes and ` = Lz/10, is used to relax the819

velocities to zero near the bottom, in part to absorb internal waves that could otherwise820

bounce around the domain. The temperature T is similarly relaxed to the initial con-821

dition with the form ∂tT = −τ−1e−(z+Lz)/` [T − T0(z)] near the bottom to maintain822

the bottom stratification where τ and ` have the same value as before.823

Horizontally-averaged output is written to disk every 10 minutes of simulation time.824

Each simulation is run for 8 days.825

C Simulation parameters826

In table 1 we tabulate the parameters used to generate training and validation sim-827

ulation data. Simulations 1–9 were used for training while simulations 10–21 were used828

for validation. Simulations 1–3 were designed to have a smaller thermocline, while 4–829

6 have a medium thermocline, and 7–9 have a large thermocline. Simulation 10–12 are830

used to test for Qb interpolation, 13–15 for Qb extraoplation, 16–18 for N2 interpolation,831

and 19–21 for N2 extrapolation. Figure 4 shows where in Qb−N2 parameter space these832

simulations lie.833

D Derivation of the non-dimensional PDE834

The numerical values of T ∼ O(101 °C) and w′T ′ ∼ O(10−5 m s−1 K−1) vary across835

six orders of magnitude. When training the neural network or performing a gradient de-836

scent search, having huge disparities in values may make it difficult to find optimal step837

sizes and thus difficult to train. Thus we perform a feature scaling on the values of T838

and w′T ′ to normalize the data before processing and training. We use a zero-mean unit-839

variance scaling840

T̂ =
T − µT
σT

and ŵ′T ′ =
w′T ′ − µw′T ′

σw′T ′
(20)

where ·̂ indicates a normalized quantity and µα and σα are the mean and standard841

deviation of α evaluated over the entire training datasets. Using this scaling both the842

inputs and outputs of the neural network are dimensionless and O(1).843
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ID ∆zs (m) ∆zt (m) Qb (m2 s−3) Qb (W m−2) N2
s (s−2) N2

d (s−2)

1 48 24 1× 10−8 20.9 2× 10−6 2× 10−6

2 48 24 3× 10−8 62.8 2× 10−6 2× 10−6

3 48 24 5× 10−8 104 2× 10−6 2× 10−6

4 24 48 1× 10−8 20.9 1× 10−6 2× 10−6

5 24 48 3× 10−8 62.8 1× 10−6 2× 10−6

6 24 48 5× 10−8 104 1× 10−6 2× 10−6

7 24 64 1× 10−8 20.9 1× 10−6 5× 10−6

8 24 64 3× 10−8 62.8 1× 10−6 5× 10−6

9 24 64 5× 10−8 104 1× 10−6 5× 10−6

10 48 24 4× 10−8 83.8 2× 10−6 2× 10−6

11 24 48 2× 10−8 41.9 1× 10−6 2× 10−6

12 24 64 4× 10−8 83.8 1× 10−6 5× 10−6

13 48 24 6× 10−8 126 2× 10−6 2× 10−6

14 24 48 0.5× 10−8 10.5 1× 10−6 2× 10−6

15 24 64 6× 10−8 126 1× 10−6 5× 10−6

16 36 36 1× 10−8 20.9 2× 10−6 2× 10−6

17 36 36 5× 10−8 104 2× 10−6 2× 10−6

18 24 56 3× 10−8 62.8 1× 10−6 2× 10−6

19 36 36 1× 10−8 20.9 2× 10−6 2× 10−6

20 36 36 5× 10−8 104 2× 10−6 2× 10−6

21 24 56 3× 10−8 62.8 1× 10−6 2× 10−6

Table 1. Simulation parameters used to generate training and validation data. Parameters

changed are described in appendix B.

As the neural network now deals in dimensionless quantities, the NDE being solved,844

equation (12), must also be non-dimensionalized. This is also important to ensure nu-845

merical stability reasons. We non-dimensionalize time t and the vertical coordinate z as846

t̂ =
t

τ
and ẑ =

z

Lz
(21)
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where τ = 8 days is the duration of the simulation and Lz = 256 m is the depth847

of the domain. The time derivative of T becomes848

∂T

∂t
=
σT
τ

∂T̂

∂t̂
(22)

and the vertical derivative of w′T ′ becomes849

∂w′T ′

∂z
=
σw′T ′

Lz

∂ŵ′T ′

∂ẑ
(23)

Using equations (20)–(23) we can rewrite the NDE, equation (12), non-dimensionally850

as851

∂T̂

∂t̂
= −

σw′T ′

σT

(
∂

∂ẑ
ŵ′T ′ − κ̂∂T̂

∂ẑ

)
(24)

which is solved numerically during the training process as described in §2.852

E Calibration of convective adjustment scheme853

Before training the NDE, the base parameterization must be calibrated. In the case854

of convective adjustment there is only one free parameter, the convective adjustment dif-855

fusivity coefficient KCA in equation (7). Since one can readily run simulations of con-856

vective adjustment to compare with LES data we evaluate the loss function (14) over857

the set of training simulations for values of 10−3 ≤ KCA ≤ 101 to determine the op-858

timal value of KCA (see figure 10).859

We see that increasing KCA only decreases the loss until it plateaus when KCA >860

1. It would seem natural, then, that we pick a large enough value to readily induce ver-861

tical mixing. However, as the NDE implemented in DifferentialEquations.jl uses the ROCK4862

explicit time-stepper, increasing KCA also increases the stiffness of the system of differ-863

ential equations necessitating a smaller time step and therefore longtimer runtimes. We864

therefore choose a value of KCA that minimizes the product of the loss function and the865

runtime. This turns out to correspond to a non-dimensional diffusivity of K̂CA ≈ 2 or866

a dimensional value of KCA = (H2/τ)K̂CA ≈ 0.2 m2 s−1. This is a very reasonable867

value and is in the range discussed by Klinger et al. (1996).868
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Figure 10. (Top) The value of the loss function (14) evaluated over the set of training sim-

ulations as a function of the convective adjustment diffusivity KCA. (Bottom) The median wall

clock time of the evaluations at each value of KCA. The red line indicates the value of KCA that

minimizes the product of the loss and runtime.

F Calibration of the K-Profile Parameterization869

For the comparison between the NDE and KPP parameterizations described in sec-870

tion 6.2, both should be trained on the same set of simulations. This is especially true871

because KPP may not be optimized for free convection, whilst the NDE is.872

We use the KPP implementation provided by OceanTurb.jl and described by Souza873

et al. (2020). It is a mathematically identical algebraic reorganization of the original for-874

mulation proposed by Large et al. (1994) to reduce the number of free parameters from875

six to just four C = (CS , CH , CD, CN ) in the case of free convection. CS is a surface layer876

fraction, CH is a mixing depth parameter, CD is a flux scaling parameter for downgra-877

dient fluxes, and CN is a flux scaling for non-local fluxes. The reference parameters as878
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given by Large et al. (2019), rephrased by the four parameters of Souza et al. (2020), are879

C0 = (0.1, 0.96, 1.36, 6.33).880

Using reference values as an initial guess, we apply an adaptive differential evolu-881

tion optimization algorithm (Y. Wang et al., 2014) with radius-limited sampling as im-882

plemented in BlackBoxOptim.jl (Feldt, 2018) (adaptive de rand 1 bin radiuslimited883

more specifically). This algorithm is suitable for finding global minima in the absence884

of gradient information from automatic differentiation. In this way we train KPP on our885

9 simulations by optimizing our four parameters to minimize the loss function (14).886

The reference parameters lead to a loss of L2(C0) = 1.26× 10−4. The optimiza-887

tion algorithm is given the following box constraints following Souza et al. (2020): 0 ≤888

CS ≤ 1, 0 ≤ CH ≤ 8, 0 ≤ CD ≤ 8, 0 ≤ CN ≤ 8. After roughly 10, 000 iterations, the889

differential evolution algorithm converges on the parameters C? = ( 2
3 , 8, 0.16, 5) with890

loss L2(C?) = 5.33× 10−5 which corresponds to an improvement of roughly 2.4×. C?891

is used when comparing KPP against other parameterizations in section 6.2.892

G Neural network architectures893

In section 7 we trained the NDE against the same training simulations but using894

five different architectures, as detailed in table 2. They are composed of a number of se-895

quential layers, either fully-connected dense layers denoted by Dn→m with n inputs and896

m outputs or one-dimensional convolutional layers denoted Cn with filter size n. The897

total number of free parameters for each architecture is included in the table, together898

with the training time per epoch for both training methods. The size of the dense lay-899

ers were typically in multiples of Nz = 32, the number of vertical grid points.900

Open Research901

Julia code to produce the simulation data, train the NDE, and plot all the figures902

can be found in a GitHub repository (https://github.com/ali-ramadhan/NeuralFreeConvection903

.jl) archived at Zenodo (Ramadhan et al., 2022).904
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Name architecture Np tfluxes
train (s) ttimeseries

train (s)

dense (default) DNz→4Nz
, D4Nz→4Nz

, D4Nz→Nz−1 24,735 4.89 20.76

dense (wider) DNz→8Nz
, D8Nz→8Nz

, D8Nz→Nz−1 82,207 6.23 35.05

dense (deeper)
DNz→4Nz , D4Nz→4Nz ,

D4Nz→4Nz
, D4Nz→Nz−1

41,247 5.77 25.48

convolutional (2)
C2, DNz−2+1→4Nz

,

D4Nz→4Nz , D4Nz→Nz−1

24,610 8.84 37.97

convolutional (4)
C4, DNz−4+1→4Nz ,

D4Nz→4Nz
, D4Nz→Nz−1

24,356 8.89 38.83

Table 2. Neural network architectures used in section 7. Np is the total number of free param-

eters for the architecture. tfluxes
train and ttimeseries

train are the training times per epoch (in seconds) using

loss functions L1 [equation (13)] and L2 [equation (14)] respectively.
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